You are currently browsing the tag archive for the ‘public cloud’ tag.

Splunk’s annual gathering, this year called .conf 2015, in late September hosted almost 4,000 Splunk customers, partners and employees. It is one of the fastest-growing user conferences in the technology industry. The area dedicated to Splunk partners has grown from a handful of booths a few years ago to a vast showroom floor many times larger. While the conference’s main announcement was the release of Splunk Enterprise 6.3, its flagship platform, the progress the company is making in the related areas of machine learning and the Internet of Things (IoT) most caught my attention.

Splunk’s strength is its ability to index, normalize, correlate and query data throughout the technology stack, including applications, servers, networks and sensors. It uses distributed search that enables correlation and analysis of events across local- and wide-area networks without moving vast amounts of data. Its architectural approach unifies cloud and on-premises implementations and provides extensibility for developers building applications. Originally, Splunk provided an innovative way to troubleshoot complex technology issues, but over time new uses for Splunk-based data have emerged, including digital marketing analytics, cyber security, fraud prevention and connecting digital devices in the emerging Internet of Things. Ventana Research has covered Splunk since its establishment in the market, most recently in this analysis of mine.

Splunk’s experience in dealing directly with distributed, time-series data and processes on a large scale puts it in position to address the Internet of Things from an industrial perspective. This sort of data is at the heart of large-scale industrial control systems, but it often comes in different formats and its implementation is based on different formats and protocols. For instance, sensor technology and control systems that were invented 10 to 20 years ago use very different technology than modern systems. Furthermore, as with computer technology, there are multiple layers in stack models that have to communicate. Splunk’s tools help engineers and systems analysts cross-reference these disparate systems in the same way that it queries computer system and network data, however, the systems can be vastly different. To address this challenge, Splunk turns to its partners and its extensible platform. For example, Kepware has developed plug-ins that use its more than 150 communication drivers so users can stream real-time industrial sensor and machine data directly into the Splunk platform. Currently, the primary value drivers for organizations in this field of the industrial IoT are operational efficiency, predictive maintenance and asset management. At the conference, Splunk showcased projects in these areas including one with Target that uses Splunk to improve operations in robotics and manufacturing.

For its part, Splunk is taking a multipronged approach by acquiring companies, investing in internal development and enabling its partner ecosystem to build new products. One key enabler of its approach to IoT is machine learning algorithms built on the Splunk platform. In machine learning a model can use new data to continuously learn and adapt its answers to queries. This differs from conventional predictive analytics, in which users build models and validate them based on a particular sample; the model does not adapt over time. With machine learning, for instance, if a piece of equipment or an automobile shows a certain optimal pattern of operation over time, an algorithm can identify that pattern and build a model for how that system should behave. When the equipment begins to act in a less optimal or anomalous way, the system can alert a human operator that there may be a problem, or in a machine-to-machine situation, it can invoke a process to solve the problem or recalibrate the machine.

Machine learning algorithms allow event processes to be audited, analyzed and acted upon in real time. They enable predictive capabilities for maintenance, transportation and logistics, and asset management and can also be applied in more people-oriented domains such as fraud prevention, security, business process improvement, and digital products.  IoT potentially can have a major impact on business processes, but only if organizations can realign systems to discover-and-adapt rather than model-and-apply approaches. For instance, processes are often carried out in an uneven fashion different from the way the model was conceived and communicated through complex process documentation and systems. As more process flows are directly instrumented and more processes carried out by machines, the ability to model directly based on the discovery of those event flows and to adapt to them (through human learning or machine learning) becomes key to improving organizational processes. Such realignment of business processes, however, often involves broad organizational transformation.Our benchmark research on operational intelligence shows that challenges associated with people and processes, rather than information and technology, most often hold back organizational improvement.

Two product announcements made at the conference illuminate the direction Splunk is taking with IoT and machine learning. The first is User Behavior Analytics (UBA), based VR2015_InnovationAwardWinneron its acquisition of Caspida, which produces advanced algorithms that can detect anomalous behavior within a network. Such algorithms can model internal user behavior, and when behavior deviates from the specified norm, it can generate an alert that can be addressed through investigative processes usingSplunk Enterprise Security 4.0. Together, Splunk Enterprise Security 4.0 and UBA won the 2015 Ventana Research CIO Innovation Award.The acquisition of Caspida shows that Splunk is not afraid to acquire companies in niche areas where they can exploit their platform to deliver organizational value. I expect that we will see more such acquisitions of companies with high value ML algorithms as Splunk carves out specific positions in the emergent markets.

The other product announced is IT Service Intelligence (ITSI), which highlights machine learning algorithms alongside of Splunk’s core capabilities. The IT Service Intelligence App is an application in which end users deploy machine learning to see patterns in various IT service scenarios. ITSI can inform and enable multiple business uses such as predictive maintenance, churn analysis, service level agreements and chargebacks. Similar to UBA, it uses anomaly detection to point out issues and enables managers to view highly distributed processes such as claims process data in insurance companies. At this point, however, use of ITSI (like other areas of IoT) may encounter cultural and political issues as organizations deal with changes in the roles of IT and operations management. Splunk’s direction with ITSI shows that the company is staying close to its IT operations knitting as it builds out application software, but such development also puts Splunk into new competitive scenarios where legacy technology and processes may still be considered good enough.

We note that ITSI is built using Splunk’s Machine Learning Toolkit and showcase, which currently is in preview mode. The vr_Big_Data_Analytics_08_top_capabilities_of_big_data_analyticsplatform is an important development for the company and fills one of the gaps that I pointed out in its portfolio last year. Addressing this gap enables Splunk and its partners to create services that apply advanced analytics to big data that almost half (45%) of organizations find important. The use of predictive and advanced analytics on big data I consider a killer application for big data; our benchmark research on big data analytics backs this claim: Predictive analytics is the type of analytics most (64%) organizations wish to pursue on big data.

Organizations currently looking at IoT use cases should consider Splunk’s strategy and tools in the context of specific problems they need to address. Machine learning algorithms built for particular industries are key so it is important to understand if the problem can be addressed using prebuilt applications provided by Splunk or one of its partners, or if the organization will need to build its own algorithms using the Splunk machine learning platform or alternatives. Evaluate both the platform capabilities and the instrumentation, the type of protocols and formats involved and how that data will be consumed into the system and related in a uniform manner. Most of all, be sure the skills and processes in the organization align with the technology from an end user and business perspective.

Regards,

Ventana Research

The concept and implementation of what is called big data are no longer new, and many organizations, especially larger ones, view it as a way to manage and understand the flood of data they receive. Our benchmark research on big data analytics shows that business intelligence (BI) is the most common type of system to which organizations deliver big data. However, BI systems aren’t a good fit for analyzing big data. They were built to provide interactive analysis of structured data sources using Structured Query Language (SQL). Big data includes large volumes of data that does not fit into rows and columns, such as sensor data, text data and Web log data. Such data must be transformed and modeled before it can fit into paradigms such as SQL.

The result is that currently many organizations run separate systems for big data and business intelligence. On one system, conventional BI tools as well as new visual discovery tools act on structured data sources to do fast interactive analysis. In this area analytic databases can use column store approaches and visualization tools as a front end for fast interaction with the data. On other systems, big data is stored in distributed systems such as the Hadoop Distributed File System (HDFS). Tools that use it have been developed to access, process and analyze the data. Commercial distribution companies aligned with the open source Apache Foundation, such as Cloudera, Hortonworks and MapR, have built ecosystems around the MapReduce processing paradigm. MapReduce works well for search-based tasks but not so well for the interactive analytics for which business intelligence systems are known. This situation has created a divide between business technology users, who gravitate to visual discovery tools that provide easily accessible and interactive data exploration, and more technically skilled users of big data tools that require sophisticated access paradigms and elongated query cycles to explore data.

vr_Big_Data_Analytics_07_dissatisfaction_with_big_data_analyticsThere are two challenges with the MapReduce approach. First, working with it is a highly technical endeavor that requires advanced skills. Our big data analytics research shows that lack of skills is the most widespread reason for dissatisfaction with big data analytics, mentioned by more than two-thirds of companies. To fill this gap, vendors of big data technologies should facilitate use of familiar interfaces including query interfaces and programming language interfaces. For example, our research shows that Standard SQL is the most important method for implementing analysis on Hadoop. To deal with this challenge, the distribution companies and others offer SQL abstraction layers on top of HDFS, such as HIVE and Cloudera Impala. Companies that I have written about include Datameer and Platfora, whose systems help users interact with Hadoop data via interactive systems such as spreadsheets and multidimensional cubes. With their familiar interaction paradigms such systems have helped increase adoption of Hadoop and enable more than a few experts to access big data systems.

The second challenge is latency. As a batch process MapReduce must sort and aggregate all of the data before creating analytic output. Technology such as Tez, developed by Hortonworks, and Cloudera Impala aim to address such speed limitations; the first leverages MapReduce, and the other circumvents MapReduce altogether. Adoption of these tools has moved the big data market forward, but challenges remain such as the continuing fragmentation of the Hadoop ecosystem and a lack of standardization in approaches.

An emerging technology holds promise for bridging the gap between big data and BI in a way that can unify big data ecosystems rather than dividing them. Apache Spark, under development since 2010 at the University of California Berkeley’s AMPLab, addresses both usability and performance concerns for big data. It adds flexibility by running on multiple platforms in terms of both clustering (such as Hadoop YARN and Apache Mesos) and distributed storage (for example, HDFS, Cassandra, Amazon S3 and OpenStack’s Swift). Spark also expands the potential uses because the platform includes an SQL abstraction layer (Spark SQL), a machine learning library (MLlib), a graph library (GraphX) and a near-real-time engine (Spark Streaming). Furthermore, Spark can be programmed using modern languages such as Python and Scala. Having all of these components integrated is important because interactive business intelligence, advanced analytics and operational intelligence on big data all can work without dealing with the complexity of having individual proprietary systems that were necessary to do the same things previously.

Because of this potential Spark is becoming a rallying point for providers of big data analytics. It has become the most active Apache project as key open source contributors moved their focus from other Hadoop projects to it. Out of the effort in Berkeley, Databricks was founded for commercial development of open source Apache Spark and has raised more than $46 million. Since the initial release in May 2014 the momentum for Spark has continued to build; major companies have made announcements around Apache Spark. IBM said it will dedicate 3,500 researchers and engineers to develop the platform and help customers deploy it. This is the largest dedicated Spark effort in the industry, akin to the move IBM made in the late 1990s with the Linux open source operating system. Oracle has built Spark into its Big Data Appliance. Microsoft has Spark as an option on its HDInsight big data approach but has also announced Prajna, an alternative approach to Spark. SAP has announced integration with its SAP HANA platform, although it represents “coopetition” for SAP’s in-memory platform. In addition, all the major business intelligence players have built or are building connectors to run on Spark. In time, Spark likely will serve as a data ingestion engine for connecting devices in the Internet of Things (IoT). For instance, Spark can integrate with technologies such as Apache Kafka or Amazon Kinesis to instantly process and analyze IoT data so that immediate action can be taken. In this way, as it is envisioned by its creators, Spark can serve as the nexus of multiple systems.

Because it is a flexible in-memory technology for big data, Spark opens the door to many new opportunities, which in business use include interactive analysis, advanced customer analytics,VentanaResearch_NextGenPredictiveAnalytics_BenchmarkResearchfraud detection, and systems and network management. At the same time, it is not yet a mature technology and for this reason,  organizations considering adoption should tread carefully. While Spark may offer better performance and usability, MapReduce is already widely deployed. For those users, it is likely best to maintain the current approach and not fix what is not broken. For future big data use, however, Spark should be carefully compared to other big data technologies. In this case as well as others, technical skills can still be a concern. Scala, for instance, one of the key languages used with Spark, has little adoption, according to our recent research on next-generation predictive analytics. Manageability is an issue as for any other nascent technology and should be carefully addressed up front. While, as noted, vendor support for Spark is becoming apparent, frequent updates to the platform can mean disruption to systems and processes, so examine the processes for these updates. Be sure that vendor support is tied to meaningful business objectives and outcomes. Spark is an exciting new technology, and for early adopters that wish to move forward with it today, both big opportunities and challenges are in store.

Regards,

Ventana Research

As I discussed in the state of data and analytics in the cloud recently, usability is a top evaluation criterion for organizations in selecting cloud-based analytics software. Data access of cloud and on-premises systems are essential antecedents of usability. They can help business people perform analytic tasks themselves without having to rely on IT. Some tools allow data integration by business users on an ad hoc basis, but to provide an enterprise integration process and a governed information platform, IT involvement is often necessary. Once that is done, though, using cloud-based data for analytics can help, empowering business users and improving communication and process .

vr_DAC_16_dealing_with_multiple_data_sourcesTo be able to make the best decisions, organizations need access to multiple integrated data sources. The research finds that the most common data sources are predictable: business applications (51%), business intelligence applications (51%), data warehouses or operational data stores (50%), relational databases (41%) and flat files (33%). Increasingly, though, organizations also are including less structured sources such as semistructured documents (33%), social media (27%) and nonrelational database systems (19%). In addition there are important external data sources, including business applications (for 61%), social media data (48%), Internet information (42%), government sources (33%) and market data (29%). Whether stored in the cloud or locally, data must be normalized and combined into a single data set so that analytics can be performed.

Given the distributed nature of data sources as well as the diversity of data types, information platforms and integration approaches are changing. While more than three in five companies (61%) still do integration primarily between on-premises systems, significant percentages are now doing integration from the cloud to on-premises (47%) and from on-premises to the cloud (39%). In the future, this trend will become more pronounced. According to our research, 85 percent of companies eventually will integrate cloud data with on-premises sources, and 84 percent will do the reverse. We expect that hybrid architectures, a mix of on-premises and cloud data infrastructures, will prevail in enterprise information architectures for years to come while slowly evolving to equality of bidirectional data transfer between the two types.

Further analysis shows that a focus on integrating data for cloud analytics can give organizations competitive advantage. Those who said it is very important to integrate data for cloud-based analytics (42% of participants) also said they are very confident in their ability to use the cloud for analytics (35%); that’s three times more often than those who said integrating data is important (10%) or somewhat important (9%). Those saying that integration is very important also said more often that cloud-based analytics helps their customers, partners and employees in an array of ways, including improved presentation of data and analytics (62% vs. 43% of those who said integration is important or somewhat important), gaining access to many different data sources (57% vs. 49%) and improved data quality and data management (59% vs. 53%). These numbers indicate that organizations that neglect the integration aspects of cloud analytics are likely to be at a disadvantage compared to their peers that make it a priority.

Integration for cloud analytics is typically a manual task. In particular, almost half (49%) of organizations in the research use spreadsheets to manage the integration and preparation of cloud-based data. Yet doing so poses serious challenges: 58 percent of those using spreadsheets said it hampers their ability to manage processes efficiently. While traditional methods may suffice for integrating relatively small and well-defined data sets in an on-premises environment, they have limits when dealing with the scale and complexity of cloud-based data. vr_DAC_02_satisfaction_with_data_integration_toolsThe research also finds that organizations utilizing newer integration tools are satisfied with them more often than those using older tools. More than three-fourths (78%) of those using tools provided by a cloud applications  provider said they are satisfied or somewhat satisfied with them, as are even more (86%) of those using data integration tools designed for cloud computing; by comparison, fewer of those using spreadsheets (56%) or traditional enterprise data integration tools (71%) are satisfied.

This is not surprising. Modern cloud connectors are designed to connect via loosely coupled interfaces that allow cloud systems to share data in a flexible manner. The research thus suggests that for organizations needing to integrate data from cloud-based data sources, switching to modern integration tools can streamline the process.

Overall three-quarters of companies in our research said that it is important or very important to access data from cloud-based sources for analysis. Cloud-based analytics isn’t useful unless the right data can be fed into the analytic process. But without capable tools this is not easy to do. A substantial impediment is that analysts spend the majority of their time in accessing and preparing the data rather than in actual analysis. Complicating the task, each data source can represent a different, possibly complex, data model. Furthermore, the data sets may have varying data formats and interface requirements, which are not easily addressed with legacy integration tools.

Such complexity is the new reality, and new tools and approaches have come to market to address these complexities. For organizations looking to integrate their data for cloud-based analytics, we recommend exploring these new integration processes and technologies.

Regards,

Ventana Research

Our recently completed benchmark research on data and analytics in the cloud shows that analytics deployed in cloud-based systems is gaining widespread adoption. Almost half (48%) of vr_DAC_04_widespread_use_of_cloud_based_analyticsparticipating organizations are using cloud-based analytics, another 19 percent said they plan to begin using it within 12 months, and 31 percent said they will begin to use cloud-based analytics but do not know when. Participants in various areas of the organization said they use cloud-based analytics, but front-office functions such as marketing and sales rated it important more often than did finance, accounting and human resources. This front-office focus is underscored by the finding that the categories of information for which cloud-based analytics is most often deemed important are forecasting (mentioned by 51%) and customer-related (47%) and sales-related (33%) information.

The research also shows that while adoption is high, organizations face challenges as they seek to realize full value from their cloud-based data and analytics initiatives. Our Performance Index analysis reveals that only one in seven organizations reach the highest Innovative level of the four levels of performance in their use of cloud-based analytics. Of the four dimensions we use to further analyze performance, organizations do better in Technology and Process than in Information and People. That is, the tools and analytic processes used for data and analytics in the cloud have advanced more rapidly than users’ abilities to work with their information. The weaker performance in People and Information is reflected in findings on the most common barriers to deployment of cloud-based analytics: lack of confidence about the security of data and analytics, mentioned by 56 percent of organizations, and not enough skills to use cloud-based analytics (42%).

Given the top barrier of perceived data security issues, it is not surprising the research finds that the largest percentage of organizations (66%) use a private cloud, which by its nature ostensibly is more secure, to deploy analytics; fewer use a public cloud (38%) or a hybrid cloud (30%), although many use more than one type today. We know from tracking analytics and business intelligence software providers that operate in the public cloud that this is changing quite rapidly. Comparing vr_DAC_06_how_to_deploy_cloud_based_analyticsdeployment by industry sector, the research analysis shows that private and hybrid clouds are more prevalent in the regulated areas of finance, insurance and real estate and government than in services and manufacturing. The research suggests that private and hybrid cloud deployments are used more often for analytics where data privacy is a concern.

Furthermore, organizations said that access to data for analytics is easier with private and hybrid clouds (29% for public cloud vs. 58% for private cloud and 67% for hybrid cloud). In addition, organizations using private and hybrid cloud more often said they have improved communication and information sharing (56% public vs. 72% private and 70% hybrid). Thus, the research data makes clear that organizations feel more comfortable implementing analytics in a private or hybrid cloud in many areas.

Private and hybrid cloud implementations of data and analytics often coincide with large data integration efforts, which are necessary at some point to benefit from such deployments. Those who said that integration is very important also said more often than those giving it less importance that cloud-based analytics helps their customers, partners and employees in an array of ways, including improved presentation of data and analytics (62% vs. 43% of those who said integration is important or somewhat important), gaining access to many different data sources (57% vs. 49%) and improved data quality and data management (59% vs. 53%). We note that the focus on data integration efforts correlates more with private and hybrid cloud approaches than with public cloud approaches, thus the benefits cannot be directly assigned to the various cloud approaches nor the integration efforts.

Another key insight from the research is that data and analytics often are considered in conjunction with mobile and collaboration initiatives which have different priorities for business than IT or in consumer markets. Nine out of 10 organizations said they use or intend to use collaboration technology to support their cloud-based data and analytics, and 83 percent said they need to support data access and analytics on mobile devices. Two-thirds said they support both tablets and smartphones and multiple mobile operating systems, the most important of which are Apple iOS (ranked first by 60%), Google Android (ranked first by 26%) and Microsoft Windows Mobile (ranked first by 13%). We note that Microsoft has a higher percentage of importance here than its reported market share (approximately 2.5%) would suggest. Similarly, Google Android has greater penetration than Apple in the consumer market (51% vs. 41%). We expect that the influence of mobile operating systems related to data and analytics in the cloud will continue to evolve and be impacted by upcoming corporate technology refreshment cycles, the consolidation of PCs and mobile devices, and the “bring your own device” (BYOD) trend.

The research finds that usability (63%) and reliability (57%) arevr_DAC_20_evaluation_criteria_for_cloud_based_analytics the top technology buying criteria, which is consistent with our business technology innovation research conducted last year. What has changed is that manageability is cited as very important as often as functionality, by approximately half of respondents, a stronger showing than in our previous research.  We think it likely that manageability is gaining prominence as cloud providers and organizations sort out issues in who manages deployments along with usage and licensing, along with who actually owns your data in the cloud which my colleague Robert Kugel has discussed.

As the research shows, the importance of cloud data and analytics is continuing to grow. The importance of this topic makes me eager to discuss further the attitudes, re­quire­­ments and future plans of organizations that use data and analytics in the cloud and to identify the best prac­tices of those that are most proficient in it. For more information on this topic, and learn more on best practices for data and analytics in the cloud, and download the executive summary of the report to improve your readiness.

Regards,

Ventana Research

RSS Tony Cosentino’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Tony Cosentino – Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 73,074 hits
%d bloggers like this: