You are currently browsing the category archive for the ‘Risk & Compliance’ category.

IBM redesigned its business intelligence platform, now called IBM Cognos Analytics. Expected to be released by the end of 2015, the new version includes features to help end users model their own data without IT assistance while maintaining the centralized governance and security that the platform already has. Our benchmark research into information optimization shows that simplifying access to information is important to vr_Info_Optimization_01_whos_responsible_for_information_availabilityvirtually all (97%) participating organizations, but it also finds that only one in four (25%) are satisfied with their current software for doing that. Simplification is a major theme of the IBM Cognos redesign.

The new IBM Cognos Analytics provides a completely Web-based environment that is consistent in the user interface and security across multiple devices and browsers. The redesigned interface follows IBM’s internal cultural shift to base product development first on the user experience and second on features and functionality. This may be a wise move as our research across multiple analytic software categories finds usability to be organizations’ most often important buying criterion.

The redesign is based on the same design and self-service principles as IBM Watson Analytics which we did award a Ventana Research Technology Innovation Award for 2015 in business analytics. The redesign is most evident in the IBM Cognos Analytics authoring mode. The Report Studio and Cognos Workspace Advanced modules have been replaced with a simplified Web-based modeling environment. The extended capabilities of IBM Cognos 10.2.2 are still available, but now they are hidden and more logically arranged to provide easier user access. For example, the previous version of Cognos presented an intimidating display of tools with which to do tasks such as fine-grain manipulation of reports; now these features are hidden but still easily accessible. If a user is having difficulty finding a particular function, a “smart search” feature helps to find the correct menu to add it.

The new system indexes objects, including metadata, as they are created, providing a more robust search function suitable for nontechnical users in the lines of business. The search feature works with what IBM calls “intent-based modeling” so users can search for words or phrases – for example, revenue by unit or product costs – and be presented with only relevant tables and columns. The system can then automatically build a model by inferring relationships in the data. The result is that the person building the report need not manually design a multidimensional model of the data, so less skilled end users can serve themselves to build their own data models that underpin dashboards and reports. Previously, end users were limited to parameterized reporting in which they could work only within the context of models previously designed by IT. Many vendors of analytics have been late in exploiting the power of search and therefore may be missing a critical feature that customers desire. Ventana Research is a proponent of such capabilities; my colleague Mark Smith has written about them in the context of data discovery technology. Search is fundamental to user-friendly discovery systems, as is reflected in the success of companies such as Google and Splunk. With search becoming more sophisticated, being based on machine-learning algorithms, we expect it to become a key requirement for new analytics and business intelligence systems.

Furthering the self-service aspect is the ability for end users to access and combine multiple data sets. The previous version of IBM Cognos (10.2.2) allowed users to work with “personal data sets” such as .csv files, but they needed an IBM DB2 back end to house the files. Now such data sets can be uploaded and managed directly on the IBM Cognos Analytics server and accessed with the new Web-based authoring tool. Once data sets are uploaded they can be accessed and modeled like any other object to which the user has access. In this way, IBM Cognos Analytics addresses the “bring your own data” challenge in which data sources such as personal spreadsheets must be integrated into enterprise analytics and business intelligence systems.

After modeling the data, users can lay out new dashboards using drag-and-drop capabilities like those found in IBM Watson Analytics. Dashboards can be previewed and put into service for one-time use or put into production mode if the user has such privileges. As is the case with IBM Watson Analytics, newly designed dashboard components such as tables, charts and maps are automatically linked so that changes in one part of the dashboard automatically relate to other parts. This feature facilitates ease of use in designing dashboards. Some other tools in the market require widgets to be connected manually, which can be time-consuming and is an impediment to prototyping of dashboards.

The move to a more self-service orientation has long been in the works for IBM Cognos and so this release is an important one for IBM. The ability to automatically integrate and model data gives the IT department a more defensible position as other self-service tools are introduced into the organization and are challenging data access and preparation built within tools like IBM Cognos. vr_DAC_20_justification_for_data_preparationThis is becoming especially important as the number and complexity of data sources increases and are needed more rapidly by business. Our research into information optimization shows that most organizations need to integrate at least six data sources and some have 20 or more sources they need to bring together. All of which confirms what our data and analytics in the cloud benchmark research finds data preparation to be a top priority in over half (55%) of organizations.

Over time, IBM intends to integrate the capabilities of Cognos Analytics with those of Watson Analytics. This is an important plan because IBM Watson Analytics has capabilities beyond those of self-service tools in the market today. In particular, the ability to explore unknown data relationships and do advanced analysis is a key differentiator for IBM Watson Analytics, as I have written. IBM Watson Analytics enables users to explore relationships in data that otherwise would not be noticeable, whereas IBM Cognos Analytics enables them to explore and put into production information based on predefined assumptions.

Going forward, I will be watching how IBM aligns Cognos Analytics with Watson Analytics, and in particular, how Cognos Analytics will fit into the IBM cloud ecosystem. Currently IBM Cognos Analytics is offered both on-premises and in a hosted cloud, but here also IBM is working to align it VR_AnalyticsandBI_VI_HotVendor_2015more closely with IBM Watson Analytics. Bringing in data preparation, data quality and MDM capabilities from the IBM DataWorks product could also benefit IBM Cognos Analytics users. IBM should emphasize the breadth of its portfolio of products including IBM Cognos TM1, IBM SPSS, IBM Watson Analytics and IBM DataWorks as it faces stiff competition in enterprise analytics and business intelligence from a host of analytics companies including new cloud-based ones. IBM is rated a Hot Vendor in our Ventana Research Analytics and Business Intelligence Value Index in part because of its overall portfolio.

For organizations already using IBM Cognos, the redesign addresses the need of end users to create their own dashboards while maintaining IT governance and control. The new interface may take some getting used to, but it is modern and more intuitive than previously. For companies new to IBM Cognos, as well as departments wanting to take a look at the platform, cloud options offer less risk. For those wanting early access to the new IBM Cognos Analytics, IBM has provided access to it on www.analyticszone.com. The changes I have noted move IBM Cognos Analytics closer to the advances in analytics as a whole, and I recommend that all these groups examine the new version.

Regards,

Ventana Research

Tableau Software’s annual conference, which company spokespeople reported had more than 10,000 attendees, filled the MGM Grand in Las Vegas. Various product announcements supported the company’s strategy to deliver value to analysts and users of visualization tools. Advances include new data preparation and integration features, advanced analytics and mapping. The company also announced the release of a stand-alone mobile application called Vizable . One key message management aimed to promote is that Tableau is more than just a visualization company.

Over the last few years Tableau has made strides in the analytics and business intelligence market with a user-centric philosophy and the ability to engage younger analysts who work in the lines of business rather than in IT. Usability continues to rank as the top criteria for selecting analytic and business intelligence software in all of our business analytics benchmark research. In this area Tableau has introduced innovations such as VizQL, originally developed at Stanford University, which links capabilities to query a database and to visualize data. This combination enables users not highly skilled in languages such as SQL or using proprietary business intelligence tools to create and share visually intuitive dashboards. The effect is to provide previously unavailable visibility into areas of their operations. The impact of being able to see and compare performance across operations and people often increases communication and knowledge sharing.

Tableau 9, released in April 2015, which I discussed, introduced advances including analytic ease of use and performance, new APIs, data preparation, storyboarding and Project Elastic, the precursor to this year’s announcement of Vizable. Adoption of 9.x appears to be robust given both the number of conference attendees and increases in third-quarter revenue ($170 million) and new customers (3,100) reported to the financial markets.

As was the case last year, conference announcements included some developments already on the market as well as some still to come. Among data preparation capabilities introduced are integration and automated spreadsheet cleanup. For the former, being able to join two data sets through a union function, which adds rows to form a single data set, and to do integration across databases by joining specific data fields gives users flexibility in combining, analyzing and visualizing multiple sets of data. For the latter, to automate the spreadsheet cleanup process Tableau examined usage patterns of Tableau Public to learn how users manually clean their spreadsheets. Then it used machine-learning algorithms to help users automate the tasks. Being able to automatically scan Excel files to find subtables and automatically transform data without manual calculations and parsing will save time for analysts who vr_LA_most_important_location_analytics_capabilitiesotherwise would have to do these tasks manually. Our benchmark research into information optimization shows that data preparation consumes the largest portion of time spent on analytics by nearly half (47%) of organizations and even higher in our latest data and analytics in the cloud benchmark research by 59 percent of organizations.

Advanced analytics is another area of innovation for Tableau. The company demonstrated developments in outlier detection and clustering analysis natively integrated with the software. Use of these features is straightforward and visually oriented, replacing the need for statistical charts with drag-and-drop manipulation. The software does not enable users to identify numbers of segments or filter the degree of the outliers, but the basic capability can reduce data sets to more manageable analytic sets and facilitate exploration of anomalous data points within large sets. The skill necessary for these tasks, unlike the interpretation of box plots introduced at last year’s conference, is more intuitive and better suited for business users of information.

The company also demonstrated new mapping and geospatial features at the conference. Capabilities to analyze down to the zip code on a global basis, define custom territories, support geospatial files, integrate with vr_LA_most_important_location_analytics_capabilitiesthe open source mapping platform MapBox and perform calculations within the context of a digital map are all useful features for location analytics, which is becoming more important in areas such as customer analytics and digital devices connected in the emerging Internet of things (IoT). Tableau is adding capabilities that participants most often cited as important in our research on location analytics: to provide geographic representation (72%), visualize metrics associated with locations (65%) and directly select and analyze locations on maps (61%).

Tableau insists that its development of new capabilities is guided by customer requests. This provides a source of opportunities to address user needs especially in the areas of data preparation, advanced analytics and location analytics. However, this strategy raises the question of whether it will ultimately put the company in conflict with the partners that have helped build the Tableau ecosystem and feed the momentum of the company thus far. Tableau is positioning its product as a fully featured analytic platform of the sort that I have outlined, but to achieve that eventually it will have to encroach on the capabilities that partners such as Alteryx, Datawatch, Informatica, Lavastorm, Paxata and Trifacta offer today. Another question is whether Tableau will continue its internal development strategy or opt to acquire companies that can broaden its capabilities that has hampered its overall value rating as identified in our 2015 Analytics and Business intelligence Value Index. In light of announcements at the conference, the path seems to be to develop these capabilities in-house. While there appears to be no immediate threat to the partnerships the continuation of development of some of these capabilities eventually will impact the partner business model in a more material way. Given that the majority of the deals for its partner ecosystem flows through Tableau itself, many of the partners are vulnerable to these development efforts. In addition I will be watching how aggressively Tableau helps to market Spark, the open source big data technology that I wrote about, as compared to some of the partner technologies that Spark threatens. Tableau has already built on Spark while some of its competitors have not, which may give Tableau a window of opportunity.

Going forward, integration with transactional systems and emerging cloud ecosystems is an area for Tableau that I will be watching. Given its architecture it’s not easy for Tableau to participate in the new generation of service-oriented architectures that characterize part of today’s cloud marketplace. For this reason, Tableau will need to continue to build out its own platform and the momentum of its ecosystem – which at this point does not appear to be a problem.

Finally, it will be interesting to see how Tableau eventually aligns its stand-alone data visualization application Vizable with its broader mobile strategy. We will be looking closely at the mobile market in our upcoming Mobile Analytics and Business Intelligence Value Index in the first half of 2016 where in our last analysis found Tableau was in the middle of the pack with other providers but they have made more investments since our last analysis.

We recommend that companies exploring analytics platforms, especially for on-premises and hosted cloud use, include Tableau on their short lists. Organizations that consider deploying Tableau on an enterprise basis should look closely at how it aligns with their broader user requirements and if their cloud strategy will meet its future needs. Furthermore, while the company has made improvements in manageability and performance, these can still be a concern in some circumstances. Tableau should be evaluated also with specific business objectives in mind and in conjunction with its partner ecosystem.

Regards,

Ventana Research

PentahoWorld 2015, Pentaho’s second annual user conference, held in mid-October, centered on the general availability of release 6.0 of its data integration and analytics platform and its acquisition by Hitachi Data Systems (HDS) earlier this year. Company spokespeople detailed the development of the product in relation to the roadmap laid out in 2014 and outlined plans for its integration with those of HDS and its parent Hitachi. They also discussed Pentaho’s and HDS’s shared intentions regarding the Internet of Things (IoT), particularly in telecommunications, healthcare, public infrastructure and IT analytics.

Pentaho competes on the basis of what it calls a “streamlined data refinery” that enables a flexible way to access, transform and integrate data and embed and present analytic data sets in usable formats without writing new code. In addition, it integrates a visual analytic workflow interface with a business intelligence front end including customization extensions; this is a differentiator for the company since much of the self-serve analytics market in which it competes is still dominated by separate point products.

Pentaho 6 aims to provide manageable and scalable self-service analytics. A key advance in the new version is what Pentaho calls “virtualized data sets” that logically aggregate multiple data sets according to transformations and integration specified by the Pentaho Data Integration (PDI) analytic workflow interface. This virtual approach allows the physical processing to be executed close to the data in various systems such as Hadoop or an RDBMS, which relieves users of the burden of having to continually move data back and forth between the vr_oi_factors_impeding_ol_implementationquery and the response systems. In this way, logical data sets can be served up for consumption in Pentaho Analytics as well as other front-end interfaces in a timely and flexible manner.

One challenge that emerges when accessing multiple integrated and transformed data sets is data lineage. Tracking its lineage is important to establish trust in the data among users by enabling them to ascertain the origin of data prior to transformation and integration. This is particularly useful in regulated industries that may need access to and tracking of source data to prove compliance. This becomes even more complicated with events and completely sourcing them along with the large number of them as found in over a third of organizations in our operational intelligence benchmark research that examined operational centric analytics and business intelligence.

Similarly, Pentaho 6 uses Simple Network Management Protocol (SNMP) to deliver application programming interface (API) extensions so that third-party tools can help provide governance lower in the system stack to further enable reliability of data. Our benchmark research consistently shows that manageability of systems is important for user organizations and in particular for big data environments.

The flexibility introduced with virtual tables and improvements in Pentaho 6.0 around in-line modeling (a concept I discussed after last year’s event are two critical means to building self-service analytic environments. Marrying various data systems with different data models, sometimes referred to as big data integration, has proven to be a difficult challenge in such environments. Pentaho’s continued focus on vr_BDI_01_automating_big_data_integrationbig data integration and providing an integration backbone to the many business intelligence tools (in addition to its own) are potential competitive differentiators for the company. While analysts and users prefer integrated tool sets, today’s fragmented analytics market is increasingly dominated by separate tools that prepare data and surface data for consumption. Front-end tools alone cannot automate the big data integration process, which Pentaho PDI can do.Our research into big data integration shows the importance of eliminating manual tasks in this process: 78 percent of companies said it is important or very important to automate their big data integration processes. Pentaho’s ability to integrate with multiple visual analytics tools is important for the company, especially in light of the HDS accounts, which likely have a variety of front-end tools. In addition, the ability to provide an integrated front end can be attractive to independent software vendors, analytics services providers and certain end-user organizations that would like to embed both integration and visualization without having to license multiple products.

Going forward, Pentaho is focused on joint opportunities with HDS such as the emerging Internet of Things. Pentaho cites established industrial customers such as Halliburton, Intelligent Mechatonic Systems and Kirchoff Datensysteme Software as reference accounts for IoT. In addition, a conference participant from Caterpillar Marine Asset Intelligence shared how it embeds Pentaho to help analyze and predict equipment failure on maritime equipment. Pentaho’s ability to integrate and analyze multiple data sources is key to delivering business value in each of these environments, but the company also possesses a little-known asset in the Weka machine learning library, which is an integrated part of the product suite. Our research on next-generation predictive analytics finds that Weka is used by 5 percent of organizations, and many of the companies that use it are large or very large, which is Pentaho’s target market. Given the importance of machine learning in the IoT category, it will be interesting to see how Pentaho leverages this asset.

Also at the conference, an HDS spokesperson discussed its target markets for IoT or what the company calls “social innovation.” These markets include telecommunications, healthcare, public infrastructure and IT analytics and reflect HDS’s customer base and the core businesses of its parent company Hitachi. Pentaho Data Integration is currently embedded within major customer environments such as Caterpillar, CERN, FINRA, Halliburton, NASDAQ, Sears and Staples, but not all of these companies fit directly into the IoT segments HDS outlined. While Hitachi’s core businesses provide a fertile ground in which grow its business, Pentaho will need to develop integration with the large industrial control systems already in place in those organizations.

The integration of Pentaho into HDS is a key priority. The 2,000-strong global sales force of HDS is now incented to sell Pentaho, and it will be important for the reps to include it as they discuss their accounts’ needs. While Pentaho’s portfolio can potentially broaden sales opportunities for HDS, big data software is a more consultative sale than the price-driven hardware and systems that the sales force may be used to. Furthermore, the buying centers, which are shifting from IT to lines of business, can be significantly different based on the type of organization and their objectives. To address this will require significant training within the HDS sales force and with partner consulting channels. The joint sales efforts will be well served by emphasizing the “big data blueprints” developed by Pentaho over the last couple of years and developing of new ones that speak to IoT and the combined capabilities of the two companies.

HDS says it will begin to embed Pentaho into its product portfolio but has promised to leave Pentaho’s roadmap intact. This is important because Pentaho has done a good job of listening to its customers and addressing the complexities that exist in big data and open source environments. As the next chapter unfolds, I will be looking at how the company integrates its platform with the HDS portfolio and expands it to deal with the complexities of IoT, which we will be investigating in upcoming benchmark research study.

For organizations that need to use large-scale integrated data sets, Pentaho provides one of the most flexible yet mature tools in the market, and they should consider it. The analytics tool provides an integrated and embeddable front end that should be of particular interest to analytics services providers and independent software vendors seeking to make information management and data analytics core capabilities. For existing HDS customers, the Pentaho portfolio will open conversations in new areas of those organizations and potentially add considerable value within accounts.

Regards,

Ventana Research

Hello! I’m excited to be the newest member of the Ventana Research leadership team to bring research insights and education to the business analytics and technology industry. I’d like to start by telling you a bit about who I am, why I’ve chosen to join this company and what I hope to contribute.

For more than 15 years I’ve been studying businesses and their buying behaviors in technology markets. I have a long-time passion for technology, which led me early in my career to systems design and integration at General Electric. I’ve led technology initiatives across marketing, sales and customer service and brought to market one of the first global deployments of a Web-based architecture for Voice of the Customer (VOC). Over the years, I’ve worked with some of the largest technology vendors, including Cisco, Hewlett-Packard, IBM, Microsoft and Oracle, on strategic initiatives in the areas of market segmentation, offer optimization and stakeholder management. Through my predictive analytics work I’ve come to understand how companies can use the new generation of tools to look into the future rather than just analyze the past. My book, Into the River: How Big Data, The Long Tail, and Situated Cognition are Changing the World of Market Insights Forever discusses the revolutionary changes in the way innovative companies use data to effect change and gain competitive advantage. I appreciate that Ventana Research has the most in-depth and new benchmark research in big data and predictive analytics that came out in 2012 building on top of its research on business analytics and Hadoop in 2011.

At Ventana Research I’ll focus on the expanding world of business analytics. Businesses increasingly are looking at past and present behaviors in order to be able to predict future ones. While we’ve done this for a long time in select areas such as financial forecasting, it’s only been in the past few years that the amount of data available, married with massive computing power, has made it possible for the newest generation of business intelligence systems to provide decision support that goes beyond the “what” to begin to provide the “so what” and the “now what.” Including social media for contextual inquiry and attitude analysis, it’s now possible to build a solid, powerful decision support system.

My interest in being part of a team that works hard at accumulating and analyzing reliable data to be able to help organizations move ever closer to “the truth” is a large part of why I came to this company. Its research and advisory services model has kept Ventana Research going strong through two recessions and has made it the go-to choice to advise both technologists and business professionals. Its prolific work, all grounded in research data, puts Ventana Research in a unique position to help companies navigate their way.

A second reason I joined the company is because I share its conviction that technology categories cannot be analyzed in a vacuum. Facing the dynamic interactions today of cloud computing, mobile technology, social media, analytics, business collaboration and big data, to look at markets as silos is to proceed with blinders on. Our ongoing benchmark research, maturity analysis and Value Index work allow us to look across the spectrum of technologies and understand both their interactions and their roles in the business.

As I’ve suggested, I’m a firm believer that knowledge evolves – that we approach the truth at an uneven pace, though hopefully moving ever closer. I learn from everyone around me – including, I hope, you. If you have a thought about something I write, please don’t hesitate to let me know.

I will be posting regularly to report on the exciting research we have going on now, trends in the industry and my views on market developments and directions. I look forward to hearing from you and working with you to help create effective, forward-looking business strategies.

Regards,

Tony Cosentino – VP & Research Director

RSS Tony Cosentino’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Tony Cosentino – Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 73,074 hits
%d bloggers like this: