You are currently browsing the category archive for the ‘Finance’ category.

In many organizations, advanced analytics groups and IT are separate, and there often is a chasm of understanding between them, as I have noted. A key finding in our benchmark research on big data analytics is that communication and knowledge sharing is a top benefit of big data analytics initiatives,vr_Big_Data_Analytics_06_benefits_realized_from_big_data_analytics but often it is a latent benefit. That is, prior to deployment, communication and knowledge sharing is deemed a marginal benefit, but once the program is deployed it is deemed a top benefit. From a tactical viewpoint, organizations may not spend enough time defining a common vocabulary for big data analytics prior to starting the program; our research shows that fewer than half of organizations have agreement on the definition of big data analytics. It makes sense therefore that, along with a technical infrastructure and management processes, explicit communication processes at the beginning of a big data analytics program can increase the chance of success. We found these qualities in the Chorus platform of Alpine Data Labs, which received the Ventana Research Technology Innovation Award for Predictive Analytics in September 2014.

VR2014_TechInnovation_AwardWinnerAlpine Chorus 5.0, the company’s flagship product, addresses the big data analytics communication challenge by providing a user-friendly platform for multiple roles in an organization to build and collaborate on analytic projects. Chorus helps organizations manage the analytic life cycle from discovery and data preparation through model development and model deployment. It brings together analytics professionals via activity streams for rapid collaboration and workspaces that encourage projects to be managed in a uniform manner. While activity streams enable group communication via short messages and file sharing, workspaces allow each analytic project to be managed separately with capabilities for project summary, tracking and data source mapping. These functions are particularly valuable as organizations embark on multiple analytic initiatives and need to track and share information about models as well as the multitude of data sources feeding the models.

The Alpine platform addresses the challenge of processing big data by parallelizing algorithms to run across big data platforms such as Hadoop and making it accessible by a wide audience of users. The platform supports most analytic databases and all major Hadoop distributions. Alpine was vr_Big_Data_Analytics_13_advanced_analytics_on_big_dataan early adopter of Apache Spark, an open source in-memory data processing framework that one day may replace the original map-reduce processing paradigm of Hadoop. Alpine Data Labs has been certified by Databricks, the primary contributor to the Spark project, which is responsible for 75 percent of the code added in the past year. With Spark, Alpine’s analytic models such as logistic regression run in a fraction of the time previously possible and new approaches, such as one the company calls Sequoia Forest, a machine learning approach that is a more robust version of random forest analysis. Our big data analytics research shows that predictive analytics is a top priority for about two-thirds (64%) of organizations, but they often lack the skills to deploy a fully customized approach. This is likely a reason that companies now are looking for more packaged approaches to implementing big data analytics (44%) than custom approaches (36%), according to our research. Alpine taps into this trend by delivering advanced analytics directly in Hadoop and the HDFS file system with its in-cluster analytic capabilities that address the complex parallel processing tasks needed to run in distributed environments such as Hadoop.

A key differentiator for Alpine is usability. Its graphical user interface provides a visual analytic workflow experience built on popular algorithms to deliver transformation capabilities and predictive analytics on big data. The platform supports scripts in the R language, which can be cut and pasted into the workflow development studio; custom operators for more advanced users; and Predictive Model Markup Language (PMML), which enables extensible model sharing and scoring across different systems. The complexities of the underlying data stores and databases as well as the orchestration of the analytic workflow are abstracted from the user. Using it an analyst or statistician does not need to know programming languages or the intricacies of the database technology to build analytic models and workflows.

It will be interesting to see what direction Alpine will take as the big data industry continues to evolve; currently there are many point tools, each strong in a specific area of the analytic process. For many of the analytic tools currently available in the market, co-opetition among vendors prevails in which partner ecosystems compete with stack-oriented approaches. The decisions vendors make in terms of partnering as well as research and development are often a function of these market dynamics, and buyers should be keenly aware of who aligns with whom.  For example, Alpine currently partners with Qlik and Tableau for data visualization but also offers its own data visualization tool. Similarly, it offers data transformation capabilities, but its toolbox could be complimented by data preparation and master data solutions. This emerging area of self-service data preparation is important to line-of-business analysts, as my colleague Mark Smith recently discussed.

Alpine Labs is one of many companies that have been gaining traction in the booming analytics market. With a cadre of large clients and venture capital backing of US$23 million in series A and B, Alpine competes in an increasingly crowded and diverse big data analytics market. The management team includes industry veterans Joe Otto and Steve Hillion. Alpine seems to be particularly well suited for customers that have a clear understanding of the challenges of advanced analytics vr_predanalytics_benefits_of_predictive_analytics_updatedand are committed to using it with big data to gain a competitive advantage. This benefit is what organizations find most in over two thirds (68%) of organizations according to our predictive analytics benchmark research. A key differentiator for Alpine Labs is the collaboration platform, which helps companies clear the communication hurdle discussed above and address the advanced analytics skills gap at the same time. The collaboration assets embedded into the application and the usability of the visual workflow process enable the product to meet a host of needs in predictive analytics. This platform approach to analytics is often missing in organizations grounded in individual processes and spreadsheet approaches. Companies seeking to use big data with advanced analytics tools should include Alpine Labs in their consideration.

Regards,

Ventana Research

The idea of not focusing on innovation is heretical in today’s business culture and media. Yet a recent article in The New Yorker suggests that today’s society and organizations focus too much on innovation and technology. The same may be true for technology in business organizations. Our research provides evidence for my claim.

My analysis on our benchmark research into information optimization shows that organizations perform better in technology and information than in the people and process dimensions. vr_Info_Optim_Maturity_06_oraganization_maturity_by_dimensionsThey face a flood of information that continues to increase in volume and frequency and must use technology to manage and analyze it in the hope of improving their decision-making and competitiveness. It is understandable that many see this as foremost an IT issue. But proficiency in use of technology and even statistical knowledge are not the only capabilities needed to optimize an organization’s use of information and analytics. They also need a framework that complements the usual analytical modeling to ensure that analytics are used correctly and deliver the desired results. Without a process for getting to the right question, users can go off in the wrong direction, producing results that cannot solve the problem.

In terms of business analytics strategy, getting to the right question is a matter of defining goals and terms; when this is done properly, the “noise” of differing meanings is reduced and people can work together efficiently. As we all know, many vr_Big_Data_Analytics_05_terminology_for_big_data_analyticsterms, especially new ones, mean different things to different people, and this can be an impediment to teamwork and achieving of business goals. Our research into big data analytics shows a significant gap in understanding here: Fewer than half of organizations have internal agreement on what big data analytics is. This lack of agreement is a barrier to building a strong analytic process. The best practice is to take time to discover what people really want to know; describing something in detail ensures that everyone is on the same page. Strategic listening is a critical skill, and done right it enables analysts to identify, craft and focus the questions that the organization needs answered through the analytic process.

To develop an effective process and create an adaptive mindset, organizations should instill a Bayesian sensibility. Bayesian analysis, also called posterior probability analysis, starts with assuming an end probability and works backward to determine prior probabilities. In a practical sense, it’s about updating a hypothesis when given new information; it’s about taking all available information and finding where it converges. This is a flexible approach in which beliefs are updated as new information is presented; it values both data and intuition. This mindset also instills strategic listening into the team and into the organization.

For business analytics, the more you know about the category you’re dealing with, the easier it is to separate what is valuable information and hypothesis from what is not. Category knowledge allows you to look at the data from a different perspective and add complex existing knowledge. This in and of itself is a Bayesian approach, and it allows the analyst to iteratively take the investigation in the right direction. This is not to say that intuition should be the analytic starting point. Data is the starting point, but a hypothesis is needed to make sense of the data. Physicist Enrico Fermi pointed out that measurement is the reduction of uncertainty. Analysts should start with a hypothesis and try to disprove it rather than to prove it. From there, iteration is needed to come as close to the truth as possible. Starting with a gut feel and trying to prove it is the wrong approach. The results are rarely surprising and the analysis is likely to add nothing new. Let the data guide the analysis rather than allowing predetermined beliefs to guide the analysis. Technological innovations in exploratory analytics and machine learning support this idea and encourage a data-driven approach.

Bayesian analysis has had a great impact not only on statistics and market insights in recent years, but it has impacted how we view important historical events as well. It is consistent with modern thinking in the fields of technology and machine learning, as well as behavioral economics. For those interested in how the Bayesian philosophy is taking hold in many different disciplines, I recommend a book entitled The Theory That Would Not Die by Sharon Bertsch McGrayne.

A good analytic process, however, needs more than a sensibility for how to derive and think about questions; it needs a tangible method to address the questions and derive business value from the answers. The method I propose can be framed in four steps: what, so what, now what and then what. Moving beyond the “what” (i.e., measurement and data) to the “so what” (i.e., insights) should be a goal of any analysis, yet many organizations are still turning out analysis that does nothing more than state the facts. Maybe 54 percent of people in a study prefer white houses, but why does anyone care? Analysis must move beyond mere findings to answer critical business questions and provide informed insights, implications and ideally full recommendations. That said, if organizations cannot get the instrumentation and the data right, findings and recommendations are subject to scrutiny.

The analytics professional should make sure that the findings, implications and recommendations of the analysis are heard by strategic and operational decision-makers. This is the “now what” step and includes business planning and implementation decisions that are driven by the analytic insights. If those insights do not lead to decision-making or action, the analytic effort has no value. There are a number of things that the analyst can do to make the information heard. A compelling story line that incorporates storytelling techniques, animation and dynamic presentation is a good start. Depending on the size of the initiative, professional videography, implementation of learning systems and change management tools also may be used.

The “then what” represents a closed-loop process in which insights and new data are fed back into the organization’s operational systems. This can be from the perspective of institutional knowledge and learning in the usual human sense which is an imperative in organizations. Our benchmark research into big data and business analytics shows a need for this: Skills and training are substantial obstacles to using big data (for 79%) and analytics (77%) in organizations. This process is similar to machine learning. That is, as new information is brought into the organization, the organization as a whole learns and adapts to current business conditions. This is the goal of the closed-loop analytic process.

Our business technology innovation research finds analytics in the top three priorities in three out of four (74%) organizations; collaboration is a top-three priority in 59 percent. vr_bti_br_technology_innovation_prioritiesBoth analytics and collaboration have a process orientation that uses technology as an enabler of the process. The sooner organizations implement a process framework, the sooner they can achieve success in their analytic efforts. To implement a successful framework such as the one described above, organizations must realize that innovation is not the top priority; rather they need the ability to use innovation to support an adaptable analytic process. The benefits will be wide-ranging, including better understanding of objectives, more targeted analysis, analytical depth and analytical initiatives that have a real impact on decision-making.

Regards,

Ventana Research

Actuate, a company known for powering BIRT, the open source business intelligence technology, has been delivering large-scale consumer and industrial applications for more than 20 years. In December the company announced it would be acquired by OpenText of Ontario, Canada. OpenText is Canada’s largest software vendor with more than 8,000 employees and a portfolio of enterprise information management products. It serves VR2014_Leadership_AwardWinnerprimarily large companies. The attraction of Actuate for such a company can be seen in a number of its legacy assets as well as more current acquisitions and developments but also its existing customer base. It was also awarded a 2014 Ventana Research Business Leadership Award.

Actuate’s foundational asset is BIRT (Business Intelligence and Reporting Tools) and its developer community. With more than 3.5 million developers and 13.5 million downloads, the BIRT developer environment is used in a variety of companies on a global basis. The BIRT community includes Java developers as well as sophisticated business intelligence design professionals, which I discussed in my outline of analytics personas. BIRT is a key project for the Eclipse Foundation, an open source integrated development environment familiar to many developers. BIRT provides a graphical interface to build reports at a granular level, and being Java-based, it provides ways to grapple with data and build data connections in a virtually limitless fashion. While new programming models and scripting languages, such as Python and Ruby, are gaining favor, Java remains a primary coding language for large-scale applications. One of the critical capabilities for business intelligence tools is to provide information in a visually compelling and easily usable format. BIRT can provide pixel-perfect reporting and granular adjustments to visualization objects. This benefit is coupled with the advantage of the open source approach: availability of skilled technical human resources on a global basis at relatively low cost.

Last year Actuate introduced iHub 3.1, a deployment server that integrates data from multiple sources and distributes content to end users. IHub has connectors to most database systems including modern approaches such as Hadoop. While Actuate provides the most common connectors out of the box, BIRT and the Java framework allow any data from any system to be brought into the fold. This type of approach to big data becomes particularly compelling for the ability to vr_Big_Data_Analytics_04_types_of_big_data_for_analyticsintegrate both large-scale data and diverse data sources. The challenge is that the work sometimes requires customization, but for large-scale enterprise applications, developers often do this to deliver capabilities that would not otherwise be accessible to end users. Our benchmark research into big data analytics shows that organizations need to access many data sources for analysis including transactional data (60%), external data (50%), content (49%) and event-centric data (48%).

In 2014, Actuate introduced iHub F-Type, which enables users to build reports, visualizations and applications and deploy them in the cloud. F-Type mitigates the need to build a separate deployment infrastructure and can act as both a “sandbox” for development and a broader production environment. Using REST-based interfaces, application developers can use F-Type to prototype and scale embedded reports for their custom applications. F-Type is delivered in the cloud, has full enterprise capabilities out of the box, and is free up to a metered output capacity of 50MB. The approach uses output metering rather than input metering used by some technology vendors. This output metering approach encourages scaling of data and focuses organizations on which specific reports they should deployed to their employees and customers.

Also in 2014, Actuate introduced BIRT Analytics 5.0, a self-service discovery platform that includes advanced analytic capabilities. In my review of BIRT Analytics, I noted its vr_predanalytics_benefits_of_predictive_analytics_updatedabilities to handle large data volumes and do intuitive predictive analytics. Organizations in our research said that predictive analytics provides advantages such as achieving competitive advantage (for 68%), new revenue opportunities (55%) and increased profitability (52%). Advances in BIRT Analytics 5.0 include integration with iHub 3.1 so developers can bring self-service discovery into their dashboards and public APIs for use in custom applications.

The combination of iHub, the F-Type freemium model, BIRT Analytics and the granular controls that BIRT provides to developers and users presents a coherent strategy especially in the context of embedded applications. Actuate CEO Pete Cittadini asserts that the company has the most APIs of any business intelligence vendor. The position is a good one especially since embedded technology is becoming important in the context of custom applications and in the so-called Internet-of-Things. The ability to make a call into another application instead of custom-coding the function itself within the workflow of an end-user application cuts developer time significantly. Furthermore, the robustness of the Actuate platform enables applications to scale almost without limit.

OpenText and Actuate have similarities, such as the maturity of the organizations and the types of large clients they vr_Info_Optimization_02_drivers_for_deploying_informationservice. It will be interesting to see how Actuate’s API strategy will impact the next generation of OpenText’s analytic applications and to what degree Actuate remains an independent business unit in marketing to customers. As a company that has been built through acquisitions, OpenText has a mature onboarding process that usually keeps the new business unit operating separately. OpenText CEO Mark Barrenechea outlines his perspective on the acquisition which will bolster its portfolio for information optimization and analytics or what it calls enterprise information management. In fact our benchmark research on information optimization finds that analytics is the top driver for deploying information in two thirds of organizations. The difference this time may be that today’s enterprises are asking for more integrated information which embeds analytics rather than having different interfaces for each of the applications or tools. The acquisition of Actuate by OpenText has now closed and now changes will occur to Actuate that should be watched closely to determine its path forward and it potential higher value for customers within OpenText.

Regards,

Ventana Research

It’s widely agreed that cloud computing is a major technology innovation. Many companies use cloud-based systems for specific business functions such as customer service, sales, marketing, finance and human resources. More generally, however, analytics and business intelligence (BI) have not migrated to the cloud as quickly. But now cloud-based data and analytics products are becoming more common. This trend is most popular among technology companies, small and midsize businesses, and departments in larger ones, but there are examples of large companies moving their entire BI environments to the cloud. Our research into big data analytics shows that more than one-fourth of analytics initiatives for companies of all sizes are cloud-based.

vr_bti_br_top_benefits_of_cloud_computingLike other cloud-based applications, cloud analytics offers enhanced scalability and flexibility, affordability and IT staff optimization. Our research shows that in general the top benefits are lowered costs (for 40%), improved efficiency (39%) and better communication and knowledge sharing (34%). Using the cloud, organizations can use a sophisticated IT infrastructure without having to dedicate staff to install and support it. There is no need for comprehensive development and testing because the provider is responsible for maintaining and upgrading the application and the infrastructure. The cloud can also provide flexible infrastructure resources to support “sandbox” testing environments for advanced analytics deployments. Multitenant cloud deployments are more affordable because costs are shared across many companies. When used departmentally, application costs need not be capitalized but instead can be made operational expenditures. Capabilities can be put to use quickly, as vendors develop them, and updates need not disrupt use. Finally, some cloud-based interfaces are more intuitive for end users since they have been designed with the user experience in mind. Regarding cloud technology, our business technology innovation research finds that usability is the most important technology evaluation criterion (for 64% of participants), followed by reliability (54%) and capability (%).

vr_bti_why_companies_dont_use_cloudFor analytics and BI specifically, there are still issues holding back adoption. Our research finds that a primary reason companies do not deploy cloud-based applications of any sort are security and compliance issues. For analytics and business intelligence, we can also include data related activities as another reason since cloud-based approaches often require data integration and transmission of sensitive data across an external network along with a range of data preparation. Such issues are especially prevalent for companies that have legacy BI tools using data models that have been distributed across their divisions. Often these organizations have defined their business logic and metrics calculations within the context of these tools. Furthermore, these tools may be integrated with other core applications such as forecasting and planning. To re-architect such data models and metrics calculations is a challenge some companies are reluctant to undertake.

In addition, despite widespread use of some types of cloud-based systems, for nontechnical business people discussions of business intelligence in the cloud can be confusing, especially when they involve information integration, the types of analytics to be performed and where the analytic processes will. The first generation of cloud applications focused on end-user processes related to the various lines of business and largely ignored the complexities inherent in information integration and analytics. Organizations can no longer ignore these complexities since doing so exacerbates the challenge of fragmented systems and distributed data. Buyers and architects should understand the benefits of analytics in the cloud and weigh these benefits against the challenges described above.

Our upcoming benchmark research into data and analytics in the cloud will examine the current maturity of this market as well opportunities and barriers to organizational adoption across line of business and IT. It will evaluate cloud-based analytics in the context of trends such as big data, mobile technology and social collaboration as well as location intelligence and predictive analytics. It will consider how cloud computing enables these and other applications and identify leading indicators for adoption of cloud-based analytics. It also will examine how cloud deployment enables large-scale and streaming applications. For example, it will examine real-time processing of vast amounts of data from sensors and other semistructured data (often referred to as the Internet of Things).

It is an exciting time to be studying this particular market as companies consider moving platforms to the cloud. I look forward to receiving any qualified feedback as we move forward to start this important benchmark research. Please get in touch if you have an interest in this area of our research.

Regards,

Ventana Research

It’s widely agreed that cloud computing is a major technology innovation. Many companies use cloud-based systems for specific business functions such as customer service, sales, marketing, finance and human resources. More generally, however, analytics and business intelligence (BI) have not migrated to the cloud as quickly. But now cloud-based data and analytics products are becoming more common. This trend is most popular among technology companies, small and midsize businesses, and departments in larger ones, but there are examples of large companies moving their entire BI environments to the cloud. Our research into big data analytics shows that more than one-fourth of analytics initiatives for companies of all sizes are cloud-based.

vr_bti_br_top_benefits_of_cloud_computingLike other cloud-based applications, cloud analytics offers enhanced scalability and flexibility, affordability and IT staff optimization. Our research shows that in general the top benefits are lowered costs (for 40%), improved efficiency (39%) and better communication and knowledge sharing (34%). Using the cloud, organizations can use a sophisticated IT infrastructure without having to dedicate staff to install and support it. There is no need for comprehensive development and testing because the provider is responsible for maintaining and upgrading the application and the infrastructure. The cloud can also provide flexible infrastructure resources to support “sandbox” testing environments for advanced analytics deployments. Multitenant cloud deployments are more affordable because costs are shared across many companies. When used departmentally, application costs need not be capitalized but instead can be made operational expenditures. Capabilities can be put to use quickly, as vendors develop them, and updates need not disrupt use. Finally, some cloud-based interfaces are more intuitive for end users since they have been designed with the user experience in mind. Regarding cloud technology, our business technology innovation research finds that usability is the most important technology evaluation criterion (for 64% of participants), followed by reliability (54%) and capability (%).

vr_bti_why_companies_dont_use_cloudFor analytics and BI specifically, there are still issues holding back adoption. Our research finds that a primary reason companies do not deploy cloud-based applications of any sort are security and compliance issues. For analytics and business intelligence, we can also include data related activities as another reason since cloud-based approaches often require data integration and transmission of sensitive data across an external network along with a range of data preparation. Such issues are especially prevalent for companies that have legacy BI tools using data models that have been distributed across their divisions. Often these organizations have defined their business logic and metrics calculations within the context of these tools. Furthermore, these tools may be integrated with other core applications such as forecasting and planning. To re-architect such data models and metrics calculations is a challenge some companies are reluctant to undertake.

In addition, despite widespread use of some types of cloud-based systems, for nontechnical business people discussions of business intelligence in the cloud can be confusing, especially when they involve information integration, the types of analytics to be performed and where the analytic processes will. The first generation of cloud applications focused on end-user processes related to the various lines of business and largely ignored the complexities inherent in information integration and analytics. Organizations can no longer ignore these complexities since doing so exacerbates the challenge of fragmented systems and distributed data. Buyers and architects should understand the benefits of analytics in the cloud and weigh these benefits against the challenges described above.

Our upcoming benchmark research into data and analytics in the cloud will examine the current maturity of this market as well opportunities and barriers to organizational adoption across line of business and IT. It will evaluate cloud-based analytics in the context of trends such as big data, mobile technology and social collaboration as well as location intelligence and predictive analytics. It will consider how cloud computing enables these and other applications and identify leading indicators for adoption of cloud-based analytics. It also will examine how cloud deployment enables large-scale and streaming applications. For example, it will examine real-time processing of vast amounts of data from sensors and other semistructured data (often referred to as the Internet of Things).

It is an exciting time to be studying this particular market as companies consider moving platforms to the cloud. I look forward to receiving any qualified feedback as we move forward to start this important benchmark research. Please get in touch if you have an interest in this area of our research.

Regards,

Tony Cosentino

VP and Research Director

Our benchmark research consistently shows that business analytics is the most significant technology trend in business today and acquiring effective predictive analytics is organizations’ top priority for analytics. It enables them to look forward rather than backward and, participate organizations reported, leads to competitive advantage and operational efficiencies.

In our benchmark research on big data analytics, for example, 64 percent of organizations ranked predictive analytics as the most Untitledimportant analytics category for working with big data. Yet a majority indicated that they do not have enough experience in applying predictive analytics to business problems and lack training on the tools themselves.

Predictive analytics improves an organization’s ability to understand potential future outcomes of variables that matter. Its results enable an organization to decide correct courses of action in key areas of the business. Predictive analytics can enhance the people, process, information and technology components of an organization’s future performance.

In our most recent research on this topic, more than half (58%) of participants indicated that predictive analytics is very important to their organization, but only one in five said they are very satisfied with their use of those analytics. Furthermore, our research found that implementing predictive analysis would have a transformational impact in one-third of organizations and a significant positive impact in more than half of other ones.

In our new research project, The Next Generation of Predictive Analytics, we will revisit predictive analysis with an eye to determining how attitudes toward it have changed,  along with its current and planned use, and its importance in business. There are significant changes in this area, including where, how, why, and when predictive analytics are applied. We expect to find changes not only in forecasting and analyzing customer churn but also in operational use at the front lines of the organization and in improving the analytic process itself. The research will also look at the progress of emerging statistical languages such as R and Python, which I have written about.

vr_predanalytics_benefits_of_predictive_analytics_updatedAs does big data analytics, predictive analytics involves sourcing data, creating models, deploying them and managing them to understand when an analytic model has become stale and ought to be revised or replaced. It should be obvious that only the most technically advanced users will be familiar with all this, so to achieve broad adoption, predictive analytics products must mask the complexity and be easy to use. Our research will determine the extent to which usability and manageability are being built into product offerings.

The promise of predictive analytics, including competitive advantage (68%), new revenue opportunities (55%), and increased profitability (52%), is significant. But to realize the advantages of predictive analytics, companies must transform how they work. In terms of people and processes a more collaborative strategy may be necessary. Analysts need tools and skills in order to use predictive analytics effectively. A new generation of technology is also becoming available where predictive analytics are easier to apply and use, along with deploy into line of business processes. This will help organizations significantly as there are not enough data scientists and specially trained professionals in predictive analytics that will be available for organizations to utilize or afford to hire.

This benchmark research will look closely at the evolving use of predictive analytics to establish how it equips business to make decisions based on likely futures, not just the past.

Regards,

Tony Cosentino

VP & Research Director

Alteryx has released version 9.0 of Alteryx Analytics that provides a range of data to predictive analytics in advance of its annual user conference called Inspire 2014. I have covered the company for several years as it has emerged as a key player in providing a range of business analytics from predictive to big data analytics. The importance of this category of analytics is revealed by our latest benchmark research on big data analytics, which finds that predictive analytics is the most important type of big data analytics, ranked first by nearly half (47%) of research participants. The new version 9 includes new capabilities and integration with a range of new information sources including read and write capability to IBM SPSS and SAS for range of analytic needs.

vr_Big_Data_Analytics_08_top_capabilities_of_big_data_analyticsAfter attending Inspire 2013 last year, I wrote about capabilities that are enabling an emerging business role, that which Alteryx calls the data artisan. The label refers to analysts who combines both art and science in using analytics to help direct business outcomes. Alteryx uses an innovative and intuitive approach to analytic tasks, using workflow and linking various data sources through in-memory computation and processing. It takes a “no code” drag and drop approach to integrate data from files and databases, prepare data for analysis, and build and score predictive models to yield relevant results. Other vendors in the advanced analytics market are also applying this approach, but few mature tools are currently available. The output of the Alteryx analytic processes can be shared automatically in numerous data formats including direct export into visualization tools such as those from Qlik (new support) and Tableau. This can help users improve their predictive analytics capabilities and take action on the outcomes of analytics, which are the two capabilities most-often cited in our research as needed to improve big data analytics.

vr_Big_Data_Analytics_09_use_cases_for_big_data_analyticsAlteryx now works with Revolution Analytics to increase the scalability of its system to work with large data sets. The open source language R continues to gain popularity and is being embedded in many business intelligence tools, but it runs only on data that can be loaded into memory. Running only in memory does not address analytics on datasets that run into Terabytes and hundreds of millions of values, and potentially requires use of a sub-sampling approach to advanced analytics. With its RevoScaleR, Revolution Analytics rewrites parts of the R algorithm so that the processing tasks can be parallelized and run in big data architectures such as Hadoop. Such capability is important for analytic problems including recommendation engines, unsupervised anomaly detection, some classification and regression problems, and some clustering problems. These analytic techniques are appropriate for some of the top business uses of big data analytics, which according to our research are cross-selling and up-selling (important to 38%), better understanding of individual customers (32%), analyzing all data rather than a sample (30%) and price optimization (28%). Alteryx Analytics automatically detects whether to use RevoScaleR or open source R algorithms. This approach simplifies the technical complexities of scaling R by providing a layer of abstraction for the analytic professional.

Scoring – the ability to input a data record and receive the probability of a particular outcome – is an important if not well understood aspect of predictive analytics. Our research shows that companies that score models on a timely basis according to their needs get better organizational results than those that score all models the same way. Working with Revolution Analytics, Alteryx has enhanced scoring scalability for R algorithms with new capabilities that chunk data in a parallelized fashion. This approach bypasses the memory-only approach to enable a theoretically unlimited number of scores to be processed. For large-scale implementations and consumer applications in industries such as retail, an important target market for Alteryx, and these capabilities are becoming important.

Alteryx 9.0 also improves on open source R’s default approach to scoring, which is “all or nothing.” That is, if data is missing (a null value) or a new level for a categorical variable is not included in the original model, R will not score the model until the issue is addressed. This process is a particular problem for analysts who want to score data in small batches or individually. In contrast, Alteryx’s new “best effort” approach scores the records that can be run without incident, and those that cannot be run are returned with an error message. This adjustment is particularly important as companies start to deploy predictive analytics into areas such as call centers or within Web applications such as automatic quotes for insurance.

vr_Big_Data_Analytics_02_defining_big_data_analyticsAlteryx 9.0 also has new predictive modeling tools and functionality. A spline model helps address regression and classification problems such as data reduction and nonlinear relationships and their interactions. It uses a clear box way to serve users with differing objectives and skill levels. The approach exposes the underpinnings of the model so that advanced users can modify a model, but at the same time less sophisticated users can use the model without necessarily understanding all of the intricacies of the model itself. Other capabilities include a Gamma regression tool allows data matching to model the Gamma family of distributions using the generalized linear modeling (GLM) framework. Heat plot tools for visualizing joint probability distributions, such as between customer income level and customer advocacy, and more robust A/B testing tools, which are particularly important in digital marketing analytics, are also part of the release.

At the same time, Alteryx has expanded its base of information sources. According to our research, working with all sources of data, not just one, is the most common definition for big data analytics, as stated by three-quarters (76%) of organizations. While structured data from transaction systems and so-called systems of record is still the most important, new data sources including those coming from external sources are becoming important. Our research shows that the most widely used external data sources are cloud applications (54%) and social media data (46%); five additional data sources, including Internet, consumer, market and government sources, are virtually tied in third position (with 39% to 42% each). Alteryx will need to be mindful of best practices in big data analytics as I have outlined to ensure it can stay on top of a growing set of requirements to blend big data but also apply a range of advanced analytics.

New connectors to the social media data provider Gnip give access to social media websites through a single API, and a DataSift (http://www.datasift.com) connector helps make social media more accessible and easier to analyze for any business need. Other new connectors in 9.0 include those for Foursquare, Google Analytics, Marketo, salesforce.com and Twitter. New data warehouse connectors include those for Amazon Redshift, HP Vertica, Microsoft SQL Server and Pivotal Greenplum. Access to SPSS and SAS data files also is introduced in this version; Alteryx hopes to break down the barriers to entry in accounts dominated by these advanced analytic stalwarts. With already existing connectors to major cloud and on-premises data sources, the company provides a robust integration platform for analytics.

Alteryx is on a solid growth curve as evidenced by the increasing number of inquiries and my conversations with company vr_Customer_Analytics_08_time_spent_in_customer_analyticsexecutives. It’s not surprising given the disruptive potential of the technology itself and its unique analytic workflow technology for data blending and advanced analytics. This data blending and workflow technology that Alteryx provides is not highlighted enough as it is one of the largest differentiators of its software and reduces the data related tasks like preparing (47%) and reviewing (43%) data that our customer analytics research finds gets in the way of analysts performing analytics. Additionally Alteryx ability to apply location analytics within its product is a key differentiation that our research found delivers exponential value from analytics than just viewing traditional visualization and tables of data. Also location analytics like Alteryx provides helps rapidly identify areas where customer experience and satisfaction can be improved and is the top benefit found in our research. The flexible platform resonates particularly well with line-of-business and especially in fast-moving, lightly regulated industries such as travel, retail and consumer goods where speed of analytics are critical to be performed. The work the company is doing with Revolution Analytics and the ability to scale is important for advanced analytic that operate on big data. The ability to seamlessly connect and blend information sources is a critical capability for Alteryx and it’s a wise move to invest further in this area but Alteryx will need to examine where collaborative technology could be used to help business work together on analytics within the software. Alteryx will need to continue to adapt to the market demand for analytics and keep focused on varying line of business areas so it can continue its growth. Just about any company involved in analytics today should evaluate Alteryx and see how it can streamline analytics in a very unique approach.

Regards,

Tony Cosentino

VP and Research Director

Organizations should consider multiple aspects of deploying big data analytics. These include the type of analytics to be deployed, how the analytics will be deployed technologically and who must be involved both internally and externally to enable success. Our recent big data analytics benchmark research assesses each of these areas. How an organization views these deployment considerations may depend on the expected benefits of the big data analytics program and the particular business case to be made, which I discussed recently.

According to the research, the most important capability of big data analytics is predictive analytics (64%), but among companies vr_Big_Data_Analytics_08_top_capabilities_of_big_data_analyticsthat have deployed big data analytics, descriptive analytic approaches of query and reporting (74%) and data discovery (64%) are more readily available than predictive capabilities (57%). Such statistics may be a function of big data technologies such as Hadoop, and their associated distributions having prioritized the ability to run descriptive statistics through standard SQL, which is the most common method for implementing analysis on Hadoop. Cloudera’s Impala, Hortonworks’ Stinger (an extension of Apache Hive), MapR’s Drill, IBM’s Big SQL, Pivotal’s HAWQ and Facebook’s open-source contribution of Presto SQL all focus on accessing data through an SQL paradigm. It is not surprising then that the technology research participants use most for big data analytics is business intelligence (75%) and that the most-used analytic methods — pivot tables (46%), classification (39%) and clustering (37%) — are descriptive and exploratory in nature. Similarly, participants said that visualization of big data allows analysts to perform faster analysis (49%), understand context better (48%), perform root-cause analysis (40%) and display multiple result sets (40%), but visualization does not provide more advanced analytic capabilities. While various vendors now offer approaches to run advanced analytics on big data, the research shows that in terms of big data, organizational capabilities still revolve around more basic analytic access.

For companies that are implementing advanced analytic capabilities on big data, there are further analytic process considerations, and many have not yet tackled those. Model building and model deployment should be manageable and timely, involve specialized personnel, and integrate into the broader enterprise architecture. While our research provides an in-depth look at adoption of the different types of in-database analytics, deployment of advanced analytic sandboxes, data mining, model management, integration with business processes and overall model deployment, that is beyond the topic here.

Beyond analytic considerations, a host of technological decisionsvr_Big_Data_Analytics_13_advanced_analytics_on_big_data must be made around big data analytics initiatives. One of these is the degree of customization necessary. As technology advances, customization is giving way to more packaged approaches to big data analytics. According to our research, the majority (54%) of companies that have already implemented big data analytics did custom builds using big data-specific languages and interfaces. The most of those that have not yet deployed are likely to purchase a dedicated or packaged application (44%), followed by a custom build (36%). We think that this pre- and post-deployment comparison reflects a maturing market.

The move from custom approaches to standardized ones has important implications for the skills sets needed for a big data vr_Big_Data_Analytics_14_big_data_analytics_skillsanalytics initiative. In comparing the skills that organizations said they currently have to the skills they need to be successful with big data analytics, it is clear that companies should spend more time building employees’ statistical, mathematical and visualization skills. On the flip side, organizations should make sure their tools can support skill sets that they already have, such as use of spreadsheets and SQL. This is convergent with other findings about training needs, which include applying analytics to business problems (54%), training on big data analytics tools (53%), analytic concepts and techniques (46%) and visualizing big data (41%). The data shows that as approaches become more standardized and the market focus shifts toward them from customized implementations, skill needs are shifting as well. This is not to say that demand is moving away from the data scientist completely. According to our research, organizations that involve cross-functional teams or data scientists in the deployment process are realizing the most significant impact. It is clear that multiple approaches for personnel, departments and current vendors play a role in deployments and that some approaches will be more effective than others.

Cloud computing is another key consideration with respect to deploying analytics systems as well as sandbox modelling and testing environments. For deployment of big data analytics, 27 percent of companies currently use a cloud-based method, while 58 percent said they do not and 16 percent do not know what is used. Not surprisingly, far fewer IT professionals (19%) than business users (40%) said they use cloud-based deployments for big data analytics. The flexibility and capability that cloud resources provide is particularly attractive for sandbox environments and for organizations that lack big data analytic expertise. However, for big data model building, most organizations (42%) still utilize a dedicated internal sandbox environment to build models while fewer (19%) use a non-dedicated internal sandbox (that is, a container in a data warehouse used to build models) and others use a cloud-based sandbox either as a completely separate physical environment (9%) or as a hybrid approach (9%). From this last data we infer that business users are sometimes using cloud-based systems to do big data analytics without the knowledge of IT staff. Among organizations that are not using cloud-based systems for big data analytics, security (45%) is the primary reason that they do not.

Perhaps the most important consideration for big data analytics is choosing vendors to partner with to achieve organizational objectives. When we understand the move from custom technological approaches to more packaged ones and the types of analytics currently being implemented for big data, it is not surprising that a majority of research participants (52%) are looking to their business intelligence systems providers to supply their big data analytics solution. However, a significant number of companies (35%) said they will turn to a specialist analytics provider or their database provider (34%). When evaluating big data analytics, usability is the most important vendor consideration but not by as wide a margin as in categories such as business intelligence. A look at criteria rated important and very important by research participants reveals usability is the highest ranked (94%), but functionality (92%) and reliability (90%) follow closely. Among innovative new technologies, collaboration is important (78%) while mobile access (46%) is much less so. Coupled with the finding that communication and knowledge sharing combined is an important benefit of big data analytics, it is clear that organizations are cognizant of the collaborative imperative when choosing a big data analytics product.

Deployment of big data analytics starts with forethought and a well-defined business case that includes the expected benefits I discussed in my previous analysis. Once the outcome-driven framework is established, organizations should consider the types of analytics needed, the enabling technologies and the people and processes necessary for implementation. To learn more about our big data analytics research, download a copy of the executive summary here.

Regards,

Tony Cosentino

VP & Research Director

We recently released our benchmark research on big data analytics, and it sheds light on many of the most important discussions occurring in business technology today. The study’s structure was based on the big data analytics framework that I laid out last year as well as the framework that my colleague Mark Smith put forth on the four types of discovery technology available. These frameworks view big data and analytics as part of a major change that includes a movement from designed data to organic data, the bringing together of analytics and data in a single system, and a corresponding move away from the technology-oriented three Vs of big data to the business-oriented three Ws of data. Our big data analytics research confirms these trends but also reveals some important subtleties and new findings with respect to this important emerging market. I want to share three of the most interesting and even surprising results and their implications for the big data analytics market.

First, we note that communication and knowledge sharing is a primary vr_Big_Data_Analytics_06_benefits_realized_from_big_data_analyticsbenefit of big data analytics initiatives, but it is a latent one. Among organizations planning to deploy big data analytics, the benefits most often anticipated are faster response to opportunities and threats (57%), improving efficiency (57%), improving the customer experience (48%) and gaining competitive advantage (43%). However, once a big data analytics system has moved into production, the benefits most often mentioned as achieved are better communication and knowledge sharing (51%), gaining competitive advantage (51%), improved efficiency in business processes (49%) and improved customer experience and satisfaction (46%). (The chart shows rankings of first choices as most important.) Although the last three of these benefits are predictable, it’s noteworthy that the benefit of communication and knowledge sharing, while not a priority before deployment, becomes one of the two most often cited later.

As for the implications, in our view, one reason why communication and knowledge sharing are more often seen as a key benefit after deployment rather than before is that agreement on big data analytics terminology is often lacking within organizations. Participants from fewer than half (44%) of organizations said that the people making business technology decisions mostly agree or completely agree on the meaning of big data analytics, while the same number said there are many different opinions about its meaning. To address this particular challenge, companies should pay more attention to setting up internal communication structures prior to the launch of a big data analytics project, and we expect collaborative technologies to play a larger role in these initiatives going forward.

vr_Big_Data_Analytics_02_defining_big_data_analyticsA second finding of our research is that integration of distributed data is the most important enabler of big data analytics. Asked the meaning of big data analytics in terms of capabilities, the largest percentage (76%) of participants said it involves analyzing data from all sources rather than just one, while for 55 percent it means analyzing all of the data rather than just a sample of it. (We allowed multiple responses.) More than half (56%) told us they view big data as finding patterns in large and diverse data sets in Hadoop, which indicates the continuing influence of this original big data technology. A second tier of percentages emphasizes timeliness as an aspect of big data: doing real-time processing on streams of data (44%), visualizing large structured data sets in seconds (40%) and doing real-time scoring against a database record (36%).

The implications here are that the primary characteristic of big data analytics technology is the ability to analyze data from many data sources. This shows that companies today are focused on bringing together multiple information sources and secondarily being able to process all data rather than just a sample, as well as being able to do machine learning on especially large data sets. Fast processing and the ability to analyze streams of data are relegated to third position in these priorities. That suggests that the so-called three Vs of big data are confusing the discussion by prioritizing volume, velocity and variety all at once. For companies engaged in big data analytics today, sourcing and integration of various data sources in an expedient manner is the top priority, followed by the ideas of size and then speed of arrival of data.

Third, we found that usage is not relegated to particular industries, vr_Big_Data_Analytics_09_use_cases_for_big_data_analyticscertain types of companies or certain functional areas. From among 25 uses for big data analytics those that participants are personally involved with, three of the four most often mentioned involve customers and sales: enabling cross-selling and up-selling (38%), understanding the customer better (32%) and optimizing pricing (28%). Meanwhile, optimizing IT operations ranked fifth (24%) though it was most often chosen by those in IT roles (76%). What is particularly fascinating, however, is that 17 of the 25 use cases were named by more than 10 percent, which indicates many uses for big data analytics.

The primary implication of this finding is that big data analytics is not following the famous technology adoption curves outlined in books such as Geoffrey Moore’s seminal work, “Crossing the Chasm.” That is, companies are not following a narrowly defined path that solves only one particular problem. Instead, they are creatively deploying technological innovations en route to a diverse set of outcomes. And this is occurring across organizational functions and industries, including conservative ones, which conflicts with conventional wisdom. For this reason, companies are more often looking across industries and functional disciplines as part of their due diligence on big data analytics to come up with unique applications that may yield competitive advantage or organizational efficiencies.

In summary, it has been difficult for companies to define what big data analytics actually means and how to prioritize their investments accordingly. Research such as ours can help organizations address this issue. While the above discussion outlines a few of the interesting findings of this research, it also yields many more insights, related to aspects as diverse as big data in the cloud, sandbox environments, embedded predictive analytics, the most important data sources in use, and the challenges of choosing an architecture and deploying big data analytic products. For a copy of the executive summary download it directly from the Ventana Research community.

Regards,

Ventana Research

As a new generation of business professionals embraces a new generation of technology, the line between people and their tools begins to blur. This shift comes as organizations become flatter and leaner and roles, vr_ngbi_br_importance_of_bi_technology_considerationscontext and responsibilities become intertwined. These changes have introduced faster and easier ways to bring information to users, in a context that makes it quicker to collaborate, assess and act. Today we see this in the prominent buying patterns for business intelligence and analytics software and an increased focus on the user experience. Almost two-thirds (63%) of participants in our benchmark research on next-generation business intelligence say that usability is the top purchase consideration for business intelligence software. In fact, usability is the driving factor in evaluating and selecting technology across all application and technology areas, according to our benchmark research.

In selecting and using technology, personas (that is, an idealized cohort of users) are particularly important, as they help business and IT assess where software will be used in the organization and define the role, responsibility and competency of users and the context of what they need and why. At the same time, personas help software companies understand the attitudinal, behavioral and demographic profile of target individuals and the specific experience that is not just attractive but essential to those users. For example, the mobile and collaborative intelligence capabilities needed by a field executive logging in from a tablet at a customer meeting are quite different from the analytic capabilities needed by an analyst trying to understand the causes of high customer churn rates and how to change that trend with a targeted marketing campaign.

Understanding this context-driven user experience is the first step toward defining the personas found in today’s range of analytics users. The key is to make the personas simple to understand but comprehensive enough to cover the diversity of needs for business analytic types within the organization. To help organizations be more effective in their analytic process and engagement of their resources and time, we recommend the following five analytical personas: (Note that in my years of segmentation work, I’ve found that the most important aspects are the number of segments and the names of those segments. To this end, I have chosen a simple number, five, and the most intuitive names I could find to represent each persona.)

Information Consumer: This persona is not technologically savvy and may even feel intimidated by technology. Information must be provided in a user-friendly fashion to minimize frustration. These users may rely on one or two tools that they use just well enough to do their jobs, which typically involves consuming information in presentations, reports, dashboards or other forms that are easy to read and interpret. They are oriented more to language than to numbers and in most cases would rather read or listen to information about the business. They can write a pertinent memo or email, make a convincing sales pitch or devise a brilliant strategy. Their typical role within the organization varies, but among this group is the high-ranking executive, including the CEO, for whom information is prepared. In the lines of business, this consumer may be a call center agent, a sales manager or a field service worker. In fact, in many companies, the information consumer makes up the majority of the organization. The information consumer usually can read Excel and PowerPoint documents but rarely works within them. This persona feels empowered by consumer-grade applications such as Google, Yelp and Facebook.

Knowledge Worker: Knowledge workers are business, technologically and data savvy and have domain knowledge. They interpret data in functional ways. These workers understand descriptive data but are not likely to take on data integration tasks or interpret advanced statistics (as in a regression analysis). In terms of tools, they can make sense of spreadsheets and with minimal training use the output of tools like business intelligence systems, pivot tables and visual discovery tools. They also actively participate in providing feedback and input to planning and business performance software. Typically, these individuals are over their heads when they are asked to develop a pivot table or structure multi-dimensional data. In some instances, however, new discovery tools allow them to move beyond such limitations. The knowledge worker persona includes but is not limited to technology savvy executives, line of business managers to directors, domain experts and operations managers. Since these workers focus on decision-making and business outcomes, analytics is an important part of their overall workflow but targeted at specific tasks. For analytical tools this role may use applications with embedded analytics, analytic discovery and modeling approaches. Visual discovery tools and in many instances user friendly SaaS applications are empowering the knowledge worker to be more analytically driven without IT involvement.

Analyst: Well versed in data, this persona often knows business intelligence and analytics tools that pertain to the position and applies analytics to analyze various aspects of the business. These users are familiar with applications and systems and know how to retrieve and assemble data from them in many forms. They can also perform a range of data blending and data preparation tasks, and create dashboards and data visualizations along with pivot tables with minimal or no training. They can interpret many types of data, including correlation and in some cases regression. The analyst’s role involves modeling and analytics either within specific analytic software or within software used for business planning and enterprise performance management. More senior analysts focus on more advanced analytics, such as predictive analytics and data mining, to understand current patterns data and predict future outcomes. These analysts might be called a split persona in terms of where their skills and roles are deployed in the organization. They may reside in IT, but a lot more are found on the business side, as they are accountable for analytics tied to the outcomes of the analytics. Analysts on the business side may not be expert in SQL or computer programming but may be adept with languages such as R or SAS. Those on the IT side are more familiar with SQL and the building of data models used in databases. With respect to data preparation, the IT organization looks at integration through the lens of ETL and associated tool sets, whereas the business side looks at it from a data-merge perspective and the creation of analytical data sets in places like spreadsheets.

The roles that represent this persona often are explicitly called analysts with a prefix that in most cases is representative of the department they work from, such as finance, marketing, sales or operations but could have prefixes like corporate, customer, operational or other cross-departmental responsibilities. The analytical tools they use almost always include the spreadsheet, as well as complementary business intelligence tools and a range of analytical tools like visual discovery and in some cases more advanced predictive analytics and statistical software. Visual discovery and commodity modeling approaches are empowering some analyst workers to move upstream from a role of data monger to a more interpretive decision support position. For those already familiar with advanced modeling, today’s big data environments, including new sources of information and modern technology, are providing the ability to build much more robust models and solve an entirely new class of business problems.

Publisher: Skilled in data and analytics, the publisher typically knows how to configure and operate business intelligence tools and publish information from them in dashboards or reports. They are typically skilled in the basics of spreadsheets and publishing information to Microsoft Word or PowerPoint tools. These users not only can interpret many types of analytics but can also build and validate the data for their organizations. Similar to the analyst, the publisher may be considered a split persona, as these individuals may be in a business unit or IT. The IT-based publisher is more familiar with the business intelligence processes and knows the data sources and how to get to data from the data warehouse or even big data sources. They may have basic configuration and scripting skills that enable them to produce outputs in several ways. They may also have basic SQL and relational data modeling skills that help them identify what can be published and determine how data can be combined through the BI tool or databases. The titles related to publisher may include business intelligence manager, data analyst, or manager or director of data or information management. The common tools used by the publisher include business intelligence authoring tools, various visualization and analytic tools, and office productivity tools like Microsoft Office and Adobe Acrobat.

Data Geek: A data geek, data analyst or potentially as sophisticated as a data scientist has expert data management skills, has an interdisciplinary approach to data that melds the split personas discussed at the analyst and senior analyst levels. The primary difference between the data geek and the analyst is that the latter usually focuses on either the IT side or the business side. A senior analyst with a Ph.D. in computer science understands relational data models and programming languages but may not understand advanced statistical models and statistical programming languages. Similarly, a Ph.D. in statistics understands advanced predictive models and associated tools but may not be prepared to write computer code. The data scientist not only understands both advanced statistics and modeling but enough about computer programming and systems along with domain knowledge. The titles for this role vary but include chief analytics officer, enterprise data architect, data analyst, head of information science and even data scientist.

To align analytics and the associated software to individuals in the organization, businesses should use personas to best identify who needs what set of capabilities to be effective. Organizations should also assess competency levels in their personas to avoid adopting software that is too complicated or difficult to use. In some cases you will have individuals that can perform multiple personas. Instead of wasting time, resources and financial capital, look to define what is needed and where training is needed to ensure business and IT work collaboratively in business analytics. While some business analytics software is getting easier to use, many of the offerings are still difficult to use because they are still being designed for IT or more sophisticated analysts. While these individuals are an important group, they represent only a small portion of the users who need analytic business tools.

vr_bigdata_obstacles_to_big_data_analytics (2)The next generation of business intelligence and business analytics will in part address the need to more easily consume information through smartphones and tablets but will not overcome one of the biggest barriers to big data analytics: the skills gap. Our benchmark research on big data shows staffing (79%) and training (77%) are the two biggest challenges organizations face in efforts to take advantage of big data through analytics. In addition, a language barrier still exists in some organizations, where IT speaks in terms of TCO and cost of ownership and efficiency while the business speaks in terms of effectiveness and outcomes or time to value, which I have written about previously. While all of these goals are important, the organization needs to cater to the metrics that are needed by its various personas. Such understanding starts with better defining the different personas and building more effective communication among the groups to ensure that they work together more collaboratively to achieve their respective goals and get the most value from business analytics.

Regards,

Tony Cosentino

VP and Research Director

RSS Tony Cosentino’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Tony Cosentino – Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 73,106 hits
%d bloggers like this: