You are currently browsing the category archive for the ‘Business Collaboration’ category.

As I discussed in the state of data and analytics in the cloud recently, usability is a top evaluation criterion for organizations in selecting cloud-based analytics software. Data access of cloud and on-premises systems are essential antecedents of usability. They can help business people perform analytic tasks themselves without having to rely on IT. Some tools allow data integration by business users on an ad hoc basis, but to provide an enterprise integration process and a governed information platform, IT involvement is often necessary. Once that is done, though, using cloud-based data for analytics can help, empowering business users and improving communication and process .

vr_DAC_16_dealing_with_multiple_data_sourcesTo be able to make the best decisions, organizations need access to multiple integrated data sources. The research finds that the most common data sources are predictable: business applications (51%), business intelligence applications (51%), data warehouses or operational data stores (50%), relational databases (41%) and flat files (33%). Increasingly, though, organizations also are including less structured sources such as semistructured documents (33%), social media (27%) and nonrelational database systems (19%). In addition there are important external data sources, including business applications (for 61%), social media data (48%), Internet information (42%), government sources (33%) and market data (29%). Whether stored in the cloud or locally, data must be normalized and combined into a single data set so that analytics can be performed.

Given the distributed nature of data sources as well as the diversity of data types, information platforms and integration approaches are changing. While more than three in five companies (61%) still do integration primarily between on-premises systems, significant percentages are now doing integration from the cloud to on-premises (47%) and from on-premises to the cloud (39%). In the future, this trend will become more pronounced. According to our research, 85 percent of companies eventually will integrate cloud data with on-premises sources, and 84 percent will do the reverse. We expect that hybrid architectures, a mix of on-premises and cloud data infrastructures, will prevail in enterprise information architectures for years to come while slowly evolving to equality of bidirectional data transfer between the two types.

Further analysis shows that a focus on integrating data for cloud analytics can give organizations competitive advantage. Those who said it is very important to integrate data for cloud-based analytics (42% of participants) also said they are very confident in their ability to use the cloud for analytics (35%); that’s three times more often than those who said integrating data is important (10%) or somewhat important (9%). Those saying that integration is very important also said more often that cloud-based analytics helps their customers, partners and employees in an array of ways, including improved presentation of data and analytics (62% vs. 43% of those who said integration is important or somewhat important), gaining access to many different data sources (57% vs. 49%) and improved data quality and data management (59% vs. 53%). These numbers indicate that organizations that neglect the integration aspects of cloud analytics are likely to be at a disadvantage compared to their peers that make it a priority.

Integration for cloud analytics is typically a manual task. In particular, almost half (49%) of organizations in the research use spreadsheets to manage the integration and preparation of cloud-based data. Yet doing so poses serious challenges: 58 percent of those using spreadsheets said it hampers their ability to manage processes efficiently. While traditional methods may suffice for integrating relatively small and well-defined data sets in an on-premises environment, they have limits when dealing with the scale and complexity of cloud-based data. vr_DAC_02_satisfaction_with_data_integration_toolsThe research also finds that organizations utilizing newer integration tools are satisfied with them more often than those using older tools. More than three-fourths (78%) of those using tools provided by a cloud applications  provider said they are satisfied or somewhat satisfied with them, as are even more (86%) of those using data integration tools designed for cloud computing; by comparison, fewer of those using spreadsheets (56%) or traditional enterprise data integration tools (71%) are satisfied.

This is not surprising. Modern cloud connectors are designed to connect via loosely coupled interfaces that allow cloud systems to share data in a flexible manner. The research thus suggests that for organizations needing to integrate data from cloud-based data sources, switching to modern integration tools can streamline the process.

Overall three-quarters of companies in our research said that it is important or very important to access data from cloud-based sources for analysis. Cloud-based analytics isn’t useful unless the right data can be fed into the analytic process. But without capable tools this is not easy to do. A substantial impediment is that analysts spend the majority of their time in accessing and preparing the data rather than in actual analysis. Complicating the task, each data source can represent a different, possibly complex, data model. Furthermore, the data sets may have varying data formats and interface requirements, which are not easily addressed with legacy integration tools.

Such complexity is the new reality, and new tools and approaches have come to market to address these complexities. For organizations looking to integrate their data for cloud-based analytics, we recommend exploring these new integration processes and technologies.

Regards,

Ventana Research

Our recently completed benchmark research on data and analytics in the cloud shows that analytics deployed in cloud-based systems is gaining widespread adoption. Almost half (48%) of vr_DAC_04_widespread_use_of_cloud_based_analyticsparticipating organizations are using cloud-based analytics, another 19 percent said they plan to begin using it within 12 months, and 31 percent said they will begin to use cloud-based analytics but do not know when. Participants in various areas of the organization said they use cloud-based analytics, but front-office functions such as marketing and sales rated it important more often than did finance, accounting and human resources. This front-office focus is underscored by the finding that the categories of information for which cloud-based analytics is most often deemed important are forecasting (mentioned by 51%) and customer-related (47%) and sales-related (33%) information.

The research also shows that while adoption is high, organizations face challenges as they seek to realize full value from their cloud-based data and analytics initiatives. Our Performance Index analysis reveals that only one in seven organizations reach the highest Innovative level of the four levels of performance in their use of cloud-based analytics. Of the four dimensions we use to further analyze performance, organizations do better in Technology and Process than in Information and People. That is, the tools and analytic processes used for data and analytics in the cloud have advanced more rapidly than users’ abilities to work with their information. The weaker performance in People and Information is reflected in findings on the most common barriers to deployment of cloud-based analytics: lack of confidence about the security of data and analytics, mentioned by 56 percent of organizations, and not enough skills to use cloud-based analytics (42%).

Given the top barrier of perceived data security issues, it is not surprising the research finds that the largest percentage of organizations (66%) use a private cloud, which by its nature ostensibly is more secure, to deploy analytics; fewer use a public cloud (38%) or a hybrid cloud (30%), although many use more than one type today. We know from tracking analytics and business intelligence software providers that operate in the public cloud that this is changing quite rapidly. Comparing vr_DAC_06_how_to_deploy_cloud_based_analyticsdeployment by industry sector, the research analysis shows that private and hybrid clouds are more prevalent in the regulated areas of finance, insurance and real estate and government than in services and manufacturing. The research suggests that private and hybrid cloud deployments are used more often for analytics where data privacy is a concern.

Furthermore, organizations said that access to data for analytics is easier with private and hybrid clouds (29% for public cloud vs. 58% for private cloud and 67% for hybrid cloud). In addition, organizations using private and hybrid cloud more often said they have improved communication and information sharing (56% public vs. 72% private and 70% hybrid). Thus, the research data makes clear that organizations feel more comfortable implementing analytics in a private or hybrid cloud in many areas.

Private and hybrid cloud implementations of data and analytics often coincide with large data integration efforts, which are necessary at some point to benefit from such deployments. Those who said that integration is very important also said more often than those giving it less importance that cloud-based analytics helps their customers, partners and employees in an array of ways, including improved presentation of data and analytics (62% vs. 43% of those who said integration is important or somewhat important), gaining access to many different data sources (57% vs. 49%) and improved data quality and data management (59% vs. 53%). We note that the focus on data integration efforts correlates more with private and hybrid cloud approaches than with public cloud approaches, thus the benefits cannot be directly assigned to the various cloud approaches nor the integration efforts.

Another key insight from the research is that data and analytics often are considered in conjunction with mobile and collaboration initiatives which have different priorities for business than IT or in consumer markets. Nine out of 10 organizations said they use or intend to use collaboration technology to support their cloud-based data and analytics, and 83 percent said they need to support data access and analytics on mobile devices. Two-thirds said they support both tablets and smartphones and multiple mobile operating systems, the most important of which are Apple iOS (ranked first by 60%), Google Android (ranked first by 26%) and Microsoft Windows Mobile (ranked first by 13%). We note that Microsoft has a higher percentage of importance here than its reported market share (approximately 2.5%) would suggest. Similarly, Google Android has greater penetration than Apple in the consumer market (51% vs. 41%). We expect that the influence of mobile operating systems related to data and analytics in the cloud will continue to evolve and be impacted by upcoming corporate technology refreshment cycles, the consolidation of PCs and mobile devices, and the “bring your own device” (BYOD) trend.

The research finds that usability (63%) and reliability (57%) arevr_DAC_20_evaluation_criteria_for_cloud_based_analytics the top technology buying criteria, which is consistent with our business technology innovation research conducted last year. What has changed is that manageability is cited as very important as often as functionality, by approximately half of respondents, a stronger showing than in our previous research.  We think it likely that manageability is gaining prominence as cloud providers and organizations sort out issues in who manages deployments along with usage and licensing, along with who actually owns your data in the cloud which my colleague Robert Kugel has discussed.

As the research shows, the importance of cloud data and analytics is continuing to grow. The importance of this topic makes me eager to discuss further the attitudes, re­quire­­ments and future plans of organizations that use data and analytics in the cloud and to identify the best prac­tices of those that are most proficient in it. For more information on this topic, and learn more on best practices for data and analytics in the cloud, and download the executive summary of the report to improve your readiness.

Regards,

Ventana Research

Oracle is one of the world’s largest business intelligence and analytics software companies. Its products range from middleware, back-end databases and ETL tools to business intelligence applications and cloud platforms, and it is well established in many corporate and government accounts. A key to Oracle’s ongoing success is in transitioning its business intelligence and analytics portfolio to self-service, big data and cloud deployments. To that end, three areas in which the company has innovated are fast, scalable access for transaction data; exploratory data access for less structured data; and cloud-based business intelligence.

 Providing users with access to structured data in an expedient and governed fashion continues to be a necessity for companies. Our benchmark research into information optimization finds drilling into information within applications (37%) and search (36%) to be the capabilities most needed for end users in business.

To provide them, Oracle enhanced its database in version Oracle 12c, which was  released in 2013 . The key innovation is to enable both transaction processing and analytic processing workloads on the same system.MostImportantEndUseCapUsing in-memory instruction sets on the processor, the system can run calculations quickly without changing the application data. The result is that end users can explore large amounts of information in the context of all data and applications running on the 12c platform. These applications include Oracle’s growing cadre of cloud based applications. The value of this is evident in our big data analytics benchmark research , which finds that the number-one source of big data is transactional data from applications, mentioned by 60 percent of participants.

 Search and interactive analysis of structured data are addressed by Oracle Business Intelligence Enterprise Edition (OBIEE) through a new visualization interface that applies assets Oracle acquired from Endeca in 2011. (Currently, this approach is available in Business Intelligence Cloud Service, which I discuss below.) To run fast queries of large data sets, columnar compression can be implemented by small code changes in the Oracle SQL Developer interface. These changes use the innovation in 12c discussed above and would be implemented by users familiar with SQL. Previously, IT professionals would have to spend significant time to construct aggregate data and tune the database so users could quickly access data. Otherwise transactional databases take a long time to query since they are row-oriented and the query literally must go through every row of data to return analytic results. With columnar compression, end users can explore and interact with data in a much faster, less limited fashion. With the new approach, users no longer need to walk down each hierarchy but can drag and drop or right-click to see the hierarchy definition. Drag-and-drop and brushing features enable exploration and uniform updates across all visualizations on the screen. Under the covers,

 DefiningBDAnalyticsthe database is doing some heavy lifting, often joining five to 10 tables to compute the query in near real time. The ability to do correlations on large data sets in near real time is a critical enabler of data exploration since it allows questions to be asked and answered one after another rather than asking users to predefine what those questions might be. This type of analytic discovery enables much faster time to value especially when providing root-cause analysis for decision-making.

 Oracle also  provides Big Data SQL , a query approach that enables analysis of unstructured data analysis on systems such as Hadoop. The model uses what Oracle calls query franchising rather than query federation in which, processing is done in a native SQL dialect and the various dialects must be translated and combined into one. With franchising, Oracle SQL runs natively inside of each of the systems. This approach applies Oracle SQL to big data systems and offloads queries to the compute nodes or storage servers of the big data system. It also maintains the security and speed needed to do exploration on less structured data sources such as JSON, which the 12c database supports natively. In this way Oracle provides security and manageability within the big data environment. Looking beyond structured data is key for organizations today. Our research shows that analyzing data from all sources is how three-fourths (76%) of organizations define big data analytics.

 To visualize and explore big data, Oracle  offers Big Data Discovery , which browses Hadoop and NoSQL stores, and samples and profiles data automatically to create catalogs. Users can explore important attributes through visualization as well as using common search techniques. The system currently supports capabilities such as string transformations, variable grouping, geotagging and text enrichment that assist in data preparation. This is a good start to address exploration on big data sources, but to better compete in this space, Oracle should offer more usable interfaces and more capabilities for both data preparation and visualization. For example, visualizations such as decision trees and correlation matrices are important to help end users to make sense of big data and do not appear to be included in the tool.

 The third analytic focus, and the catalyst of the innovations discussed above, is Oracle’s move to the cloud. In September 2014,  Oracle released BI Cloud Service  (BICS), which helps business users access Oracle BI systems in a self-service manner with limited help from IT. Cloud computing has been a major priority for Oracle in the past few years with not just its applications but also for its entire stack of technology. With BICS, Oracle offers a stand-alone product with which a departmental workgroup can insert analytics directly into its cloud applications. When BICS is coupled with the Data-as-a-Service (DaaS) offering, which accesses internal data as well as third-party data sources in the cloud, Oracle is able to deliver cross-channel analysis and identity-as-data. Cross-channel analysis and identity management are important in cloud analytics from both business and a privacy and security perspectives.

 CustomerAnalyticsIn particular, such tools can help tie together and thus simplify the complex task of managing multichannel marketing. Availability and simplicity in analytics tools are priorities for marketing organizations.  Our research into next-generation customer analytics  shows that for most organizations data not being readily available (63%) and difficulty in maintaining customer analytics systems (56%) are top challenges.

 Oracle is not the first vendor to offer self-service discovery and flexible data preparation, but BICS begins its movement from the previous generation of BI technology to the next. BICS puts Oracle Transactional Business Intelligence (OTBI) in the cloud as a first step toward integration with vertical applications in the lines of business. It lays the groundwork for cross-functional analysis in the cloud.

 We don’t expect BICS to compete immediately with more user-friendly analytic tools designed for business and analytics or with well-established cloud computing BI players. Designers still must be trained in Oracle tools, and for this reason, it appears that the tool, at least in its first iteration, is targeted only at Oracle’s OBIEE customers seeking a departmental solution that limits IT involvement. Oracle should continue to address usability for both end users and designers. BICS also should connect to more data sources including Oracle Essbase. It currently comes bundled with  Oracle Database Schema Service  which acts as the sole data source but does not directly connect with any other database. Furthermore, data movement is not streamlined in the first iteration, and replication of data is often necessary.

 Overall, Oracle’s moves in business intelligence and analytics make sense because they use the same semantic models in the cloud as those analytic applications that many very large companies use today and won’t abandon soon. Furthermore, given Oracle’s growing portfolio of cloud applications and the integration of analytics into these transactional applications through OTBI, Oracle can leverage cloud application differentiation for companies not using Oracle. If Oracle can align its self-service discovery and big data tools with its current portfolio in reasonably timely fashion, current customers will not turn away from their Oracle investments. In particular, those with an Oracle centric cloud roadmap will have no reason to switch. We note that cloud-based business intelligence and analytics applications is still a developing market. Our previous research showed that business intelligence had been a laggard in the cloud in comparison to genres such as human capital management, marketing, sales and customer service. We are examining trends in our forthcoming  data and analytics in the cloud benchmark research, which will evaluate both the current state of such software and where the industry likely is heading in 2015 and beyond. For organizations shifting to cloud platforms, Oracle has a very progressive cloud computing portfolio that  my colleague has assessed  and they have created a path by investing in its Platform-as-a-Service (PaaS) and DaaS offerings. Its goal is to provide uniform capabilities across mobility, collaboration, big data and analytics so that all Oracle applications are consistent for users and can be extended easily by developers. However, Oracle competes against many cloud computing heavyweights like Amazon Web Services, IBM and Microsoft, so achieving success through significant growth has some challenges. Oracle customers generally and OBIEE customers especially should investigate the new innovations in the context of their own roadmaps for big data analytics, cloud computing and self-service access to analytics.

 Regards,

Ventana Research

Oracle is one of the world’s largest business intelligence and analytics software companies. Its products range from middleware, back-end databases and ETL tools to business intelligence applications and cloud platforms, and it is well established in many corporate and government accounts. A key to Oracle’s ongoing success is in transitioning its business intelligence and analytics portfolio to self-service, big data and cloud deployments. To that end, three areas in which the company has innovated are fast, scalable access for transaction data; exploratory data access for less structured data; and cloud-based business intelligence.

 Providing users with access to structured data in an expedient and governed fashion continues to be a necessity for companies. Our benchmark research into information optimization finds drilling into information within applications (37%) and search (36%) to be the capabilities most needed for end users in business.

To provide them, Oracle enhanced its database in version Oracle 12c, which was  released in 2013 . The key innovation is to enable both transaction processing and analytic processing workloads on the same system.MostImportantEndUseCapUsing in-memory instruction sets on the processor, the system can run calculations quickly without changing the application data. The result is that end users can explore large amounts of information in the context of all data and applications running on the 12c platform. These applications include Oracle’s growing cadre of cloud based applications. The value of this is evident in our big data analytics benchmark research , which finds that the number-one source of big data is transactional data from applications, mentioned by 60 percent of participants.

 Search and interactive analysis of structured data are addressed by Oracle Business Intelligence Enterprise Edition (OBIEE) through a new visualization interface that applies assets Oracle acquired from Endeca in 2011. (Currently, this approach is available in Business Intelligence Cloud Service, which I discuss below.) To run fast queries of large data sets, columnar compression can be implemented by small code changes in the Oracle SQL Developer interface. These changes use the innovation in 12c discussed above and would be implemented by users familiar with SQL. Previously, IT professionals would have to spend significant time to construct aggregate data and tune the database so users could quickly access data. Otherwise transactional databases take a long time to query since they are row-oriented and the query literally must go through every row of data to return analytic results. With columnar compression, end users can explore and interact with data in a much faster, less limited fashion. With the new approach, users no longer need to walk down each hierarchy but can drag and drop or right-click to see the hierarchy definition. Drag-and-drop and brushing features enable exploration and uniform updates across all visualizations on the screen. Under the covers,

 DefiningBDAnalyticsthe database is doing some heavy lifting, often joining five to 10 tables to compute the query in near real time. The ability to do correlations on large data sets in near real time is a critical enabler of data exploration since it allows questions to be asked and answered one after another rather than asking users to predefine what those questions might be. This type of analytic discovery enables much faster time to value especially when providing root-cause analysis for decision-making.

 Oracle also  provides Big Data SQL , a query approach that enables analysis of unstructured data analysis on systems such as Hadoop. The model uses what Oracle calls query franchising rather than query federation in which, processing is done in a native SQL dialect and the various dialects must be translated and combined into one. With franchising, Oracle SQL runs natively inside of each of the systems. This approach applies Oracle SQL to big data systems and offloads queries to the compute nodes or storage servers of the big data system. It also maintains the security and speed needed to do exploration on less structured data sources such as JSON, which the 12c database supports natively. In this way Oracle provides security and manageability within the big data environment. Looking beyond structured data is key for organizations today. Our research shows that analyzing data from all sources is how three-fourths (76%) of organizations define big data analytics.

 To visualize and explore big data, Oracle  offers Big Data Discovery , which browses Hadoop and NoSQL stores, and samples and profiles data automatically to create catalogs. Users can explore important attributes through visualization as well as using common search techniques. The system currently supports capabilities such as string transformations, variable grouping, geotagging and text enrichment that assist in data preparation. This is a good start to address exploration on big data sources, but to better compete in this space, Oracle should offer more usable interfaces and more capabilities for both data preparation and visualization. For example, visualizations such as decision trees and correlation matrices are important to help end users to make sense of big data and do not appear to be included in the tool.

 The third analytic focus, and the catalyst of the innovations discussed above, is Oracle’s move to the cloud. In September 2014,  Oracle released BI Cloud Service  (BICS), which helps business users access Oracle BI systems in a self-service manner with limited help from IT. Cloud computing has been a major priority for Oracle in the past few years with not just its applications but also for its entire stack of technology. With BICS, Oracle offers a stand-alone product with which a departmental workgroup can insert analytics directly into its cloud applications. When BICS is coupled with the Data-as-a-Service (DaaS) offering, which accesses internal data as well as third-party data sources in the cloud, Oracle is able to deliver cross-channel analysis and identity-as-data. Cross-channel analysis and identity management are important in cloud analytics from both business and a privacy and security perspectives.

 CustomerAnalyticsIn particular, such tools can help tie together and thus simplify the complex task of managing multichannel marketing. Availability and simplicity in analytics tools are priorities for marketing organizations.  Our research into next-generation customer analytics  shows that for most organizations data not being readily available (63%) and difficulty in maintaining customer analytics systems (56%) are top challenges.

 Oracle is not the first vendor to offer self-service discovery and flexible data preparation, but BICS begins its movement from the previous generation of BI technology to the next. BICS puts Oracle Transactional Business Intelligence (OTBI) in the cloud as a first step toward integration with vertical applications in the lines of business. It lays the groundwork for cross-functional analysis in the cloud.

 We don’t expect BICS to compete immediately with more user-friendly analytic tools designed for business and analytics or with well-established cloud computing BI players. Designers still must be trained in Oracle tools, and for this reason, it appears that the tool, at least in its first iteration, is targeted only at Oracle’s OBIEE customers seeking a departmental solution that limits IT involvement. Oracle should continue to address usability for both end users and designers. BICS also should connect to more data sources including Oracle Essbase. It currently comes bundled with  Oracle Database Schema Service  which acts as the sole data source but does not directly connect with any other database. Furthermore, data movement is not streamlined in the first iteration, and replication of data is often necessary.

 Overall, Oracle’s moves in business intelligence and analytics make sense because they use the same semantic models in the cloud as those analytic applications that many very large companies use today and won’t abandon soon. Furthermore, given Oracle’s growing portfolio of cloud applications and the integration of analytics into these transactional applications through OTBI, Oracle can leverage cloud application differentiation for companies not using Oracle. If Oracle can align its self-service discovery and big data tools with its current portfolio in reasonably timely fashion, current customers will not turn away from their Oracle investments. In particular, those with an Oracle centric cloud roadmap will have no reason to switch. We note that cloud-based business intelligence and analytics applications is still a developing market. Our previous research showed that business intelligence had been a laggard in the cloud in comparison to genres such as human capital management, marketing, sales and customer service. We are examining trends in our forthcoming  data and analytics in the cloud benchmark research, which will evaluate both the current state of such software and where the industry likely is heading in 2015 and beyond. For organizations shifting to cloud platforms, Oracle has a very progressive cloud computing portfolio that  my colleague has assessed  and they have created a path by investing in its Platform-as-a-Service (PaaS) and DaaS offerings. Its goal is to provide uniform capabilities across mobility, collaboration, big data and analytics so that all Oracle applications are consistent for users and can be extended easily by developers. However, Oracle competes against many cloud computing heavyweights like Amazon Web Services, IBM and Microsoft, so achieving success through significant growth has some challenges. Oracle customers generally and OBIEE customers especially should investigate the new innovations in the context of their own roadmaps for big data analytics, cloud computing and self-service access to analytics.

 Regards,

Ventana Research

Our benchmark research into business technology innovation shows that analytics ranks first or second as a business technology innovation priority in 59 percent of organizations. Businesses are moving budgets and responsibilities for analytics closer to the sales operations, often in the form of so-calledvr_Big_Data_Analytics_15_new_technologies_enhance_analytics shadow IT organizations that report into decentralized and autonomous business units rather than a central IT organization. New technologies such as in-memory systems (50%), Hadoop (42%) and data warehouse appliances (33%) are top back-end technologies being used to acquire a new generation of analytic capabilities. They are enabling new possibilities including self-service analytics, mobile access, more collaborative interaction and real-time analytics. In 2014, Ventana Research helped lead the discussion around topics such as information optimization, data preparation, big data analytics and mobile business intelligence. In 2015, we will continue to cover these topics while adding new areas of innovation as they emerge.

Three key topics lead our 2015 business analytics research agenda. The first focuses on cloud-based analytics. In our benchmark research on information optimization, nearly all (97%) organizations said it is important or very important to Ventana_Research_Benchmark_Research_Logosimplify informa­tion access for both their business and their customers. Part of the challenge in optimizing an organization’s use of information is to integrate and analyze data that originates in the cloud or has been moved there. This issue has important implications for information presentation, where analytics are executed and whether business intelligence will continue to move to the cloud in more than a piecemeal fashion. We are currently exploring these topics in our new benchmark research called analytics and data in the cloud Coupled with the issue of cloud use is the proliferation of embedded analytics and the imperative for organizations to provide scalable analytics within the workflow of applications. A key question we’ll try to answer this year is whether companies that have focused primarily on operational cloud applications at the expense of developing their analytics portfolio or those that have focused more on analytics will gain a competitive advantage.

The second research agenda item is advanced analytics. It may be useful to divide this category into machine learning and predictive analytics, which I have discussed and covered in vr_predanalytics_benefits_of_predictive_analytics_updatedour benchmark research on big data analytics. Predictive analytics has long been available in some sectors of the business world, and two-thirds (68%) of organizations as found in our research that use it said it provides a competitive advantage. Programming languages such as R, the use of Predictive Model Markup Language (PMML), inclusion of social media data in prediction, massive scale simulation, and right-time integration of scoring at the point of decision-making are all important advances in this area. Machine learning also been around for a long time, but it wasn’t until the instrumentation of big data sources and advances in technology that it made sense to use in more than academic environments. At the same time as the technology landscape is evolving, it is getting more fragmented and complex; in order to simplify it, software designers will need innovative uses of machine learning to mask the underlying complexity through layers of abstraction. A technology such as Spark out of Amp-Lab at Berkeley is still immature, but it promises to enable increasing uses of machine learning on big data. Areas such as sourcing data and preparing data for analysis must be simplified so analysts are not overwhelmed by big data.

Our third area of focus is the user experience in business intelligence tools. Simplification and optimization of information in a context-sensitive manner are paramount. An intuitive user experience can advance the people and process dimensions VR_Value_Index_Logoof business, which have lagged technology innovation according to our research in multiple areas. New approaches coming from business end-users, especially in the tech-savvy millennial generation, are pushing the envelope here. In particular, mobility and collaboration are enabling new user experiences in both business organizations and society at large. Adding to it is data collected in more forms, such as location analytics (which we have done research on), individual and societal relationships, information and popular brands. How business intelligence tools incorporate such information and make it easy to prepare, design and consume for different organizational personas is not just an agenda focus but also one focus of our 2015 Analytics and Business Intelligence Value Index to be published in the first quarter of the year.

This shapes up as an exciting year. I welcome any feedback you have on this research agenda and look forward to providing research, collaborating and educating with you in 2015.

Regards,

Ventana Research

In 2014, IBM announced Watson Analytics, which uses machine learning and natural language processing to unify and simplify the user experience in each step of the analytic processing: data acquisition, data preparation, analysis, dashboarding and storytelling.  After a relatively short beta testing period involving more than 22,000 users, IBM released Watson Analytics for general availability in December. There are two editions: the “freemium” trial version allows 500MB of data storage and access to file sizes less than 100,000 rows of data and 50 columns; the personal edition is a monthly subscription that enables larger files and more storage.

Its initial release includes functions to explore, predict and assemble data. Many of the features are based on IBM’s SPSS Analytic Catalyst, which I wrote about and which won the 2013 Ventana Research Technology Innovation Award for business analytics. Once data is uploaded, the explore function enables users to analyze data in an iterative fashion using natural language processing and simple point-and-click actions. Algorithms decide the best fit for graphics based on the data, but users may choose other graphics as needed. An “insight bar” shows other relevant data that may contain insights such as potential market opportunities.

The ability to explore data through visualizations with minimal knowledge is a primary aim of modern analytics tools. With the explore function incorporating natural language processing, which other tools in the market lack, IBM makes analytics accessible to users without the need to drag and drop dimensions and measures across the screen. This feature should not be underestimated; usability is the buying criterion for analytics tools most widely cited in our benchmark research on next-generation business intelligence (by 63% of organizations).

vr_ngbi_br_importance_of_bi_technology_considerations_updatedThe predict capability of Watson Analytics focuses on driver analysis, which is useful in a variety of circumstances such as sales win and loss, market lift analysis, operations and churn analysis. In its simplest form, a driver analysis aims to understand causes and effects among multiple variables. This is a complex process that most organizations leave to their resident statistician or outsource to a professional analyst. By examining the underlying data characteristics, the predict function can address data sets, including what may be considered big data, with an appropriate algorithm. The benefit for nontechnical users is that Watson Analytics makes the decision on selecting the algorithm and presents results in a relatively nontechnical manner such as spiral diagrams or tree diagrams. Having absorbed the top-level information, users can drill down into top key drivers. This ability enables users to see relative attribute influences and interactivity between attributes. Understanding interactivity is an important part of driver analysis since causal variables often move together (a challenge known as multicollinearity) and it is sometimes hard to distinguish what is actually causing a particular outcome. For instance, analysis may blame the customer service department for a product defect and point to it as the primary driver of customer defection. Accepting this result, a company may mistakenly try to fix customer service when a product issue needs to be addressed. This approach also overcomes the challenge of Simpson’s paradox, in which a trend that appears in different groups of data disappears or reverses when these groups are combined. This is a hindrance for some visualization tools in the market.

Once users have analyzed the data sufficiently and want to create and share their analysis, the assemble function enables them to bring together various dashboard visualizations in a single screen. Currently, Watson Analytics does such sharing (as well as comments related to the visualizations) via email. In the future, it would good to see capabilities such as annotation and cloud-based sharing in the product.

Full data preparation capabilities are not yet integrated into Watson Analytics. Currently, it includes a data quality report that gives confidence levels for the current data based on its cleanliness, and basic sort, transform and relabeling are incorporated as well. I assume that IBM has much more in the works here. For instance, its DataWorks cloud service offers APIs for some of the best data preparation and master data management available today. DataWorks can mask data at the source and do probabilistic matching against many sources including both cloud and on-premises addresses.  This is a major challenge organizations face when needing to conduct analytics across many data sets. For instance, in multichannel marketing, each individual customer may have many email addresses as well as different mailing addresses, phone numbers and identifiers for social media. A so-called “golden record” needs to be created so all such information can be linked together. Conceptually, the data becomes one long row of data related to that golden record, rather than multiple unassociated data in rows of shorter length. This data needs to be brought into a company’s own internal systems, and personally identifiable information must be stripped out before anything moves into a public domain. In a probabilistic matching system, data is matched not on one field but through associations of data which gives levels of certainty that records should be merged. This is different than past approaches and one of the reasons for significant innovation in the category. Multiple startups have been entering the data preparation space to address the need for a better user experience in data preparation. Such needs have been documented as one of the foundational issues facing the world of big data. Our benchmark research into information optimization shows that data preparation (47%) and quality and consistency (45%) are the most time-consuming tasks for organizations in analytics.

Watson Analytics is deployed on IBM’s SoftLayer cloud vr_Info_Optimization_04_basic_information_tasks_consume_timetechnology and is part of a push to move its analytic portfolio into the cloud. Early in 2015 the company plans to move its SPSS and Cognos products into the cloud via a managed service, thus offloading tasks such as setup, maintenance and disaster recovery management. Watson Analytics will be offered as a set of APIs much as the broader Watson cognitive computing platform has been. Last year, IBM said it would move almost all of its software portfolio to the cloud via its Bluemix service platform. These cloud efforts, coupled with the company’s substantial investment in partner programs with developers and universities around the world, suggest that Watson may power many next-generation cognitive computing applications, a market estimated to grow into the tens of billions of dollars in the next several years.

Overall, I expect Watson Analytics to gain more attention and adoption in 2015 and beyond. Its design philosophy and user experience are innovative, but work must be done in some areas to make it a tool that professionals use in their daily work. Given the resources IBM is putting into the product and the massive amounts of product feedback it is receiving, I expect initial release issues to be worked out quickly through the continuous release cycle. Once they are, Watson Analytics will raise the bar on self-service analytics.

Regards,

Ventana Research

Our benchmark research consistently shows that business analytics is the most significant technology trend in business today and acquiring effective predictive analytics is organizations’ top priority for analytics. It enables them to look forward rather than backward and, participate organizations reported, leads to competitive advantage and operational efficiencies.

In our benchmark research on big data analytics, for example, 64 percent of organizations ranked predictive analytics as the most Untitledimportant analytics category for working with big data. Yet a majority indicated that they do not have enough experience in applying predictive analytics to business problems and lack training on the tools themselves.

Predictive analytics improves an organization’s ability to understand potential future outcomes of variables that matter. Its results enable an organization to decide correct courses of action in key areas of the business. Predictive analytics can enhance the people, process, information and technology components of an organization’s future performance.

In our most recent research on this topic, more than half (58%) of participants indicated that predictive analytics is very important to their organization, but only one in five said they are very satisfied with their use of those analytics. Furthermore, our research found that implementing predictive analysis would have a transformational impact in one-third of organizations and a significant positive impact in more than half of other ones.

In our new research project, The Next Generation of Predictive Analytics, we will revisit predictive analysis with an eye to determining how attitudes toward it have changed,  along with its current and planned use, and its importance in business. There are significant changes in this area, including where, how, why, and when predictive analytics are applied. We expect to find changes not only in forecasting and analyzing customer churn but also in operational use at the front lines of the organization and in improving the analytic process itself. The research will also look at the progress of emerging statistical languages such as R and Python, which I have written about.

vr_predanalytics_benefits_of_predictive_analytics_updatedAs does big data analytics, predictive analytics involves sourcing data, creating models, deploying them and managing them to understand when an analytic model has become stale and ought to be revised or replaced. It should be obvious that only the most technically advanced users will be familiar with all this, so to achieve broad adoption, predictive analytics products must mask the complexity and be easy to use. Our research will determine the extent to which usability and manageability are being built into product offerings.

The promise of predictive analytics, including competitive advantage (68%), new revenue opportunities (55%), and increased profitability (52%), is significant. But to realize the advantages of predictive analytics, companies must transform how they work. In terms of people and processes a more collaborative strategy may be necessary. Analysts need tools and skills in order to use predictive analytics effectively. A new generation of technology is also becoming available where predictive analytics are easier to apply and use, along with deploy into line of business processes. This will help organizations significantly as there are not enough data scientists and specially trained professionals in predictive analytics that will be available for organizations to utilize or afford to hire.

This benchmark research will look closely at the evolving use of predictive analytics to establish how it equips business to make decisions based on likely futures, not just the past.

Regards,

Tony Cosentino

VP & Research Director

Organizations should consider multiple aspects of deploying big data analytics. These include the type of analytics to be deployed, how the analytics will be deployed technologically and who must be involved both internally and externally to enable success. Our recent big data analytics benchmark research assesses each of these areas. How an organization views these deployment considerations may depend on the expected benefits of the big data analytics program and the particular business case to be made, which I discussed recently.

According to the research, the most important capability of big data analytics is predictive analytics (64%), but among companies vr_Big_Data_Analytics_08_top_capabilities_of_big_data_analyticsthat have deployed big data analytics, descriptive analytic approaches of query and reporting (74%) and data discovery (64%) are more readily available than predictive capabilities (57%). Such statistics may be a function of big data technologies such as Hadoop, and their associated distributions having prioritized the ability to run descriptive statistics through standard SQL, which is the most common method for implementing analysis on Hadoop. Cloudera’s Impala, Hortonworks’ Stinger (an extension of Apache Hive), MapR’s Drill, IBM’s Big SQL, Pivotal’s HAWQ and Facebook’s open-source contribution of Presto SQL all focus on accessing data through an SQL paradigm. It is not surprising then that the technology research participants use most for big data analytics is business intelligence (75%) and that the most-used analytic methods — pivot tables (46%), classification (39%) and clustering (37%) — are descriptive and exploratory in nature. Similarly, participants said that visualization of big data allows analysts to perform faster analysis (49%), understand context better (48%), perform root-cause analysis (40%) and display multiple result sets (40%), but visualization does not provide more advanced analytic capabilities. While various vendors now offer approaches to run advanced analytics on big data, the research shows that in terms of big data, organizational capabilities still revolve around more basic analytic access.

For companies that are implementing advanced analytic capabilities on big data, there are further analytic process considerations, and many have not yet tackled those. Model building and model deployment should be manageable and timely, involve specialized personnel, and integrate into the broader enterprise architecture. While our research provides an in-depth look at adoption of the different types of in-database analytics, deployment of advanced analytic sandboxes, data mining, model management, integration with business processes and overall model deployment, that is beyond the topic here.

Beyond analytic considerations, a host of technological decisionsvr_Big_Data_Analytics_13_advanced_analytics_on_big_data must be made around big data analytics initiatives. One of these is the degree of customization necessary. As technology advances, customization is giving way to more packaged approaches to big data analytics. According to our research, the majority (54%) of companies that have already implemented big data analytics did custom builds using big data-specific languages and interfaces. The most of those that have not yet deployed are likely to purchase a dedicated or packaged application (44%), followed by a custom build (36%). We think that this pre- and post-deployment comparison reflects a maturing market.

The move from custom approaches to standardized ones has important implications for the skills sets needed for a big data vr_Big_Data_Analytics_14_big_data_analytics_skillsanalytics initiative. In comparing the skills that organizations said they currently have to the skills they need to be successful with big data analytics, it is clear that companies should spend more time building employees’ statistical, mathematical and visualization skills. On the flip side, organizations should make sure their tools can support skill sets that they already have, such as use of spreadsheets and SQL. This is convergent with other findings about training needs, which include applying analytics to business problems (54%), training on big data analytics tools (53%), analytic concepts and techniques (46%) and visualizing big data (41%). The data shows that as approaches become more standardized and the market focus shifts toward them from customized implementations, skill needs are shifting as well. This is not to say that demand is moving away from the data scientist completely. According to our research, organizations that involve cross-functional teams or data scientists in the deployment process are realizing the most significant impact. It is clear that multiple approaches for personnel, departments and current vendors play a role in deployments and that some approaches will be more effective than others.

Cloud computing is another key consideration with respect to deploying analytics systems as well as sandbox modelling and testing environments. For deployment of big data analytics, 27 percent of companies currently use a cloud-based method, while 58 percent said they do not and 16 percent do not know what is used. Not surprisingly, far fewer IT professionals (19%) than business users (40%) said they use cloud-based deployments for big data analytics. The flexibility and capability that cloud resources provide is particularly attractive for sandbox environments and for organizations that lack big data analytic expertise. However, for big data model building, most organizations (42%) still utilize a dedicated internal sandbox environment to build models while fewer (19%) use a non-dedicated internal sandbox (that is, a container in a data warehouse used to build models) and others use a cloud-based sandbox either as a completely separate physical environment (9%) or as a hybrid approach (9%). From this last data we infer that business users are sometimes using cloud-based systems to do big data analytics without the knowledge of IT staff. Among organizations that are not using cloud-based systems for big data analytics, security (45%) is the primary reason that they do not.

Perhaps the most important consideration for big data analytics is choosing vendors to partner with to achieve organizational objectives. When we understand the move from custom technological approaches to more packaged ones and the types of analytics currently being implemented for big data, it is not surprising that a majority of research participants (52%) are looking to their business intelligence systems providers to supply their big data analytics solution. However, a significant number of companies (35%) said they will turn to a specialist analytics provider or their database provider (34%). When evaluating big data analytics, usability is the most important vendor consideration but not by as wide a margin as in categories such as business intelligence. A look at criteria rated important and very important by research participants reveals usability is the highest ranked (94%), but functionality (92%) and reliability (90%) follow closely. Among innovative new technologies, collaboration is important (78%) while mobile access (46%) is much less so. Coupled with the finding that communication and knowledge sharing combined is an important benefit of big data analytics, it is clear that organizations are cognizant of the collaborative imperative when choosing a big data analytics product.

Deployment of big data analytics starts with forethought and a well-defined business case that includes the expected benefits I discussed in my previous analysis. Once the outcome-driven framework is established, organizations should consider the types of analytics needed, the enabling technologies and the people and processes necessary for implementation. To learn more about our big data analytics research, download a copy of the executive summary here.

Regards,

Tony Cosentino

VP & Research Director

Ventana Research recently completed the most comprehensiveVRMobileBIVI evaluation of mobile business intelligence products and vendors available anywhere today. The evaluation includes 16 technology vendors’ offerings on smartphones and tablets and use across Apple, Google Android, Microsoft Surface and RIM BlackBerry that were assessed in seven key categories: usability, manageability, reliability, capability, adaptability, vendor validation and TCO and ROI. The result is our Value Index for Mobile Business Intelligence in 2014. The analysis shows that the top supplier is MicroStrategy, which qualifies as a Hot vendor and is followed by 10 other Hot vendors: IBM, SAP, QlikTech, Information Builders, Yellowfin, Tableau Software, Roambi, SAS, Oracle and arcplan.

Our expertise, hands on experience and the buyer research from our benchmark research on next-generation business intelligence and on information optimization informed our product evaluations in this new Value Index. The research examined business intelligence on mobile technology to determine organizations’ current and planned use and the capabilities required for successful deployment.

What we found was wide interest in mobile business intelligence and a desire to improve the use of information in 40 percent of organizations, though adoption is less pervasive than interest. Fewer than half of organizations currently access BI capabilities on mobile devices, but nearly three-quarters (71%) expect their mobile workforce to be able to access BI capabilities in the next 12 months. The research also shows strong executive support: Nearly half of executives said that mobility is very important to their BI processes.

Mobile_BI_Weighted_OverallEase of access and use are an important criteria in this Value Index because the largest percentage of organizations identified usability as an important factor in evaluations of mobile business intelligence applications. This is an emphasis that we find in most of our research, and in this case it also may reflect users’ experience with first-generation business intelligence on mobile devices; not all those applications were optimized for touch-screen interfaces and designed to support gestures. It is clear that today’s mobile workforce requires the ability to access and analyze data simply and in a straightforward manner, using an intuitive interface.

The top five companies’ products in our 2014 Mobile Business Intelligence Value Index all provide strong user experiences and functionality. MicroStrategy stood out across the board, finishing first in five categories and most notably in the areas of user experience, mobile application development and presentation of information. IBM, the second-place finisher, has made significant progress in mobile BI with six releases in the past year, adding support for Android, advanced security features and an extensible visualization library. SAP’s steady support for the mobile access to SAP BusinessObjects platform and support for access to SAP Lumira, and its integrated mobile device management software helped produce high scores in various categories and put it in third place. QlikTech’s flexible offline deployment capabilities for the iPad and its high ranking in assurance-related category of TCO and ROI secured it the fourth spot. Information Builders’ latest release of WebFOCUS renders content directly with HTML5 and its Active Technologies and Mobile Faves, the company delivers strong mobile capabilities and rounds out the top five ranked companies. Other noteworthy innovations in mobile BI include Yellowfin’s collaboration technology, Roambi’s use of storyboarding in its Flow application.

Although there is some commonality in how vendors provide mobile access to data, there are many differences among their offerings that can make one a better fit than another for an organization’s particular needs. For example, companies that want their mobile workforce to be able to engage in root-cause discovery analysis may prefer tools from Tableau and QlikTech. For large companies looking for a custom application approach, MicroStrategy or Roambi may be good choices, while others looking for streamlined collaboration on mobile devices may prefer Yellowfin. Many companies may base the decision on mobile business intelligence on which vendor they currently have installed. Customers with large implementations from IBM, SAP or Information Builders will be reassured to find that these companies have made mobility a critical focus.

To learn more about this research and to download a free executive summary, please visit http://www.ventanaresearch.com/bivalueindex/.

Regards,

Tony Cosentino

Vice President and Research Director

Our recently released benchmark research on information optimization shows that 97 percent of organizations find it important or very important to make information available to the business and customers, Ventana_Research_Benchmark_Research_Logoyet only 25 percent are satisfied with the technology they use to provide that access. This wide gap between importance and satisfaction reflects the complexity of preparing and presenting information in a world where users need to access many forms of data that exist across distributed systems.

Information optimization is a new focus in the enterprise software market. It builds on existing investments in business applications, business intelligence and information management and also benefits from recent advances in business analytics and big data, lifting information to higher levels of use and greater value in organizations. Information optimization also builds on information management and information applications, areas Ventana Research has previously researched. For more on the background and definition of information optimization, please see my colleague Mark Smith’s foundational analysis.

vr_Info_Optimization_01_whos_responsible_for_information_availabilityThe drive to improve information availability derives from a need for greater operational efficiency, according to two-thirds (67%) of organizations. The imperative is so strong that 43 percent of all organizations currently are making changes to how they design and deploy information, while another 37 percent plan to make changes in the next 12 months. The pressure for such change is being directed toward the IT group, which is involved with the task of optimizing information in more than four-fifths of organizations with or without line of business support. IT, however, is in an untenable position, as demands are far outstripping its available resources and technology to deal with the problem, which leads to dissatisfaction with the IT department in two out of five organizations, according to our research. Internally, many organizations try to optimize information using manual spreadsheet processes and are confident in their ability to get by 73% of the time. But when the focus turns to the ability to make information available to partners or customers, an increasingly important capability in today’s information-driven economy, the confidence rate drops dramatically to 62% and 55% respectively.

A large part of the information optimization challenge is users’ vr_Info_Optimization_09_most_important_end_user_capabilitiesdifferent requirements. For instance, the top needs of analysts are extracting information, designing and integrating metrics, and developing access policies. In contrast, the top needs of business users are drilling into information (37%), search capabilities (36%) and collaboration (27%). IT must also consider multiple points of integration such as security frameworks and information modeling, as well as integration with operational and content management systems. This is complicated further by multiple new standards coming into play as customer and financial data – still the most important information systems in the organization – append less structured sources of data that add context and value. SQL is still the dominant standard when it comes to information platforms, but less structured approaches such as XML and JSON are emerging fast. Furthermore, innovations in the collaborative and mobile workforce are driving standards such as HTML5 and must be considered carefully when optimizing information. Platform considerations are also affected by the increasing use of analytic databases, in-memory approaches and Hadoop. Traditional approaches like an RDBMS on standard hardware and flat files are still the most common, but the most growth is with in-memory systems and Hadoop. This is interesting because these technologies allow for multiple new approaches to analysis such as visual discovery and machine learning on large data sets.  Adding to the impetus for change is that organizations using an RDBMS on standard hardware and flat files are less satisfied than those using the more innovative approaches to big data.

Information optimization also encounters challenges associated with data preparation and data presentation. In our research, 47 percent of organizations said that  they spend the largest portion of their time in data preparation, but less than half said they are satisfied with their process of creating information. Contributing to this dissatisfaction are lack of resources, lack of flexibility and speed of integration. Lack of resources and speed of integration tend to move together. That is, when more financial and human resources are dedicated to the integration efforts, satisfaction is higher. Adding more human and financial resources does not necessarily increase flexibility. That is a function of both tools and processes, and we see it as a result of divergent data preparation workflows occurring in organizations. One is a more structured approach that follows more traditional ETL paths that can lead to timely integration of data once everything is defined and the system is in place, but is less flexible. Another data preparation approach is to merge internal and external information on the fly in a sandbox environment or in response to sudden market challenges. These different information flows ultimately have to support specific forms of information presentation for users, whether that be the creation of an analytic data set for a complex statistical procedure by a data scientist within the organization or a single number with qualitative context for an executive on a mobile device.

Thus it is clear that information optimization is a critical focus for organizations; it’s also an important area of study for Ventana Research in 2014. Our latest benchmark research shows that the challenges are complex and involve the entire organization. As new technologies come to market and information processes must be aligned with the needs of the lines of business and the functional roles within organizations, companies that are able to simplify access to information and analytics through the information optimization approaches discussed above will provide an edge on competitors.

Regards,

Tony Cosentino

VP & Research Director

RSS Tony Cosentino’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Tony Cosentino – Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 73,610 hits
%d bloggers like this: