You are currently browsing the monthly archive for December 2015.

Tableau Software’s annual conference, which company spokespeople reported had more than 10,000 attendees, filled the MGM Grand in Las Vegas. Various product announcements supported the company’s strategy to deliver value to analysts and users of visualization tools. Advances include new data preparation and integration features, advanced analytics and mapping. The company also announced the release of a stand-alone mobile application called Vizable . One key message management aimed to promote is that Tableau is more than just a visualization company.

Over the last few years Tableau has made strides in the analytics and business intelligence market with a user-centric philosophy and the ability to engage younger analysts who work in the lines of business rather than in IT. Usability continues to rank as the top criteria for selecting analytic and business intelligence software in all of our business analytics benchmark research. In this area Tableau has introduced innovations such as VizQL, originally developed at Stanford University, which links capabilities to query a database and to visualize data. This combination enables users not highly skilled in languages such as SQL or using proprietary business intelligence tools to create and share visually intuitive dashboards. The effect is to provide previously unavailable visibility into areas of their operations. The impact of being able to see and compare performance across operations and people often increases communication and knowledge sharing.

Tableau 9, released in April 2015, which I discussed, introduced advances including analytic ease of use and performance, new APIs, data preparation, storyboarding and Project Elastic, the precursor to this year’s announcement of Vizable. Adoption of 9.x appears to be robust given both the number of conference attendees and increases in third-quarter revenue ($170 million) and new customers (3,100) reported to the financial markets.

As was the case last year, conference announcements included some developments already on the market as well as some still to come. Among data preparation capabilities introduced are integration and automated spreadsheet cleanup. For the former, being able to join two data sets through a union function, which adds rows to form a single data set, and to do integration across databases by joining specific data fields gives users flexibility in combining, analyzing and visualizing multiple sets of data. For the latter, to automate the spreadsheet cleanup process Tableau examined usage patterns of Tableau Public to learn how users manually clean their spreadsheets. Then it used machine-learning algorithms to help users automate the tasks. Being able to automatically scan Excel files to find subtables and automatically transform data without manual calculations and parsing will save time for analysts who vr_LA_most_important_location_analytics_capabilitiesotherwise would have to do these tasks manually. Our benchmark research into information optimization shows that data preparation consumes the largest portion of time spent on analytics by nearly half (47%) of organizations and even higher in our latest data and analytics in the cloud benchmark research by 59 percent of organizations.

Advanced analytics is another area of innovation for Tableau. The company demonstrated developments in outlier detection and clustering analysis natively integrated with the software. Use of these features is straightforward and visually oriented, replacing the need for statistical charts with drag-and-drop manipulation. The software does not enable users to identify numbers of segments or filter the degree of the outliers, but the basic capability can reduce data sets to more manageable analytic sets and facilitate exploration of anomalous data points within large sets. The skill necessary for these tasks, unlike the interpretation of box plots introduced at last year’s conference, is more intuitive and better suited for business users of information.

The company also demonstrated new mapping and geospatial features at the conference. Capabilities to analyze down to the zip code on a global basis, define custom territories, support geospatial files, integrate with vr_LA_most_important_location_analytics_capabilitiesthe open source mapping platform MapBox and perform calculations within the context of a digital map are all useful features for location analytics, which is becoming more important in areas such as customer analytics and digital devices connected in the emerging Internet of things (IoT). Tableau is adding capabilities that participants most often cited as important in our research on location analytics: to provide geographic representation (72%), visualize metrics associated with locations (65%) and directly select and analyze locations on maps (61%).

Tableau insists that its development of new capabilities is guided by customer requests. This provides a source of opportunities to address user needs especially in the areas of data preparation, advanced analytics and location analytics. However, this strategy raises the question of whether it will ultimately put the company in conflict with the partners that have helped build the Tableau ecosystem and feed the momentum of the company thus far. Tableau is positioning its product as a fully featured analytic platform of the sort that I have outlined, but to achieve that eventually it will have to encroach on the capabilities that partners such as Alteryx, Datawatch, Informatica, Lavastorm, Paxata and Trifacta offer today. Another question is whether Tableau will continue its internal development strategy or opt to acquire companies that can broaden its capabilities that has hampered its overall value rating as identified in our 2015 Analytics and Business intelligence Value Index. In light of announcements at the conference, the path seems to be to develop these capabilities in-house. While there appears to be no immediate threat to the partnerships the continuation of development of some of these capabilities eventually will impact the partner business model in a more material way. Given that the majority of the deals for its partner ecosystem flows through Tableau itself, many of the partners are vulnerable to these development efforts. In addition I will be watching how aggressively Tableau helps to market Spark, the open source big data technology that I wrote about, as compared to some of the partner technologies that Spark threatens. Tableau has already built on Spark while some of its competitors have not, which may give Tableau a window of opportunity.

Going forward, integration with transactional systems and emerging cloud ecosystems is an area for Tableau that I will be watching. Given its architecture it’s not easy for Tableau to participate in the new generation of service-oriented architectures that characterize part of today’s cloud marketplace. For this reason, Tableau will need to continue to build out its own platform and the momentum of its ecosystem – which at this point does not appear to be a problem.

Finally, it will be interesting to see how Tableau eventually aligns its stand-alone data visualization application Vizable with its broader mobile strategy. We will be looking closely at the mobile market in our upcoming Mobile Analytics and Business Intelligence Value Index in the first half of 2016 where in our last analysis found Tableau was in the middle of the pack with other providers but they have made more investments since our last analysis.

We recommend that companies exploring analytics platforms, especially for on-premises and hosted cloud use, include Tableau on their short lists. Organizations that consider deploying Tableau on an enterprise basis should look closely at how it aligns with their broader user requirements and if their cloud strategy will meet its future needs. Furthermore, while the company has made improvements in manageability and performance, these can still be a concern in some circumstances. Tableau should be evaluated also with specific business objectives in mind and in conjunction with its partner ecosystem.

Regards,

Ventana Research

PentahoWorld 2015, Pentaho’s second annual user conference, held in mid-October, centered on the general availability of release 6.0 of its data integration and analytics platform and its acquisition by Hitachi Data Systems (HDS) earlier this year. Company spokespeople detailed the development of the product in relation to the roadmap laid out in 2014 and outlined plans for its integration with those of HDS and its parent Hitachi. They also discussed Pentaho’s and HDS’s shared intentions regarding the Internet of Things (IoT), particularly in telecommunications, healthcare, public infrastructure and IT analytics.

Pentaho competes on the basis of what it calls a “streamlined data refinery” that enables a flexible way to access, transform and integrate data and embed and present analytic data sets in usable formats without writing new code. In addition, it integrates a visual analytic workflow interface with a business intelligence front end including customization extensions; this is a differentiator for the company since much of the self-serve analytics market in which it competes is still dominated by separate point products.

Pentaho 6 aims to provide manageable and scalable self-service analytics. A key advance in the new version is what Pentaho calls “virtualized data sets” that logically aggregate multiple data sets according to transformations and integration specified by the Pentaho Data Integration (PDI) analytic workflow interface. This virtual approach allows the physical processing to be executed close to the data in various systems such as Hadoop or an RDBMS, which relieves users of the burden of having to continually move data back and forth between the vr_oi_factors_impeding_ol_implementationquery and the response systems. In this way, logical data sets can be served up for consumption in Pentaho Analytics as well as other front-end interfaces in a timely and flexible manner.

One challenge that emerges when accessing multiple integrated and transformed data sets is data lineage. Tracking its lineage is important to establish trust in the data among users by enabling them to ascertain the origin of data prior to transformation and integration. This is particularly useful in regulated industries that may need access to and tracking of source data to prove compliance. This becomes even more complicated with events and completely sourcing them along with the large number of them as found in over a third of organizations in our operational intelligence benchmark research that examined operational centric analytics and business intelligence.

Similarly, Pentaho 6 uses Simple Network Management Protocol (SNMP) to deliver application programming interface (API) extensions so that third-party tools can help provide governance lower in the system stack to further enable reliability of data. Our benchmark research consistently shows that manageability of systems is important for user organizations and in particular for big data environments.

The flexibility introduced with virtual tables and improvements in Pentaho 6.0 around in-line modeling (a concept I discussed after last year’s event are two critical means to building self-service analytic environments. Marrying various data systems with different data models, sometimes referred to as big data integration, has proven to be a difficult challenge in such environments. Pentaho’s continued focus on vr_BDI_01_automating_big_data_integrationbig data integration and providing an integration backbone to the many business intelligence tools (in addition to its own) are potential competitive differentiators for the company. While analysts and users prefer integrated tool sets, today’s fragmented analytics market is increasingly dominated by separate tools that prepare data and surface data for consumption. Front-end tools alone cannot automate the big data integration process, which Pentaho PDI can do.Our research into big data integration shows the importance of eliminating manual tasks in this process: 78 percent of companies said it is important or very important to automate their big data integration processes. Pentaho’s ability to integrate with multiple visual analytics tools is important for the company, especially in light of the HDS accounts, which likely have a variety of front-end tools. In addition, the ability to provide an integrated front end can be attractive to independent software vendors, analytics services providers and certain end-user organizations that would like to embed both integration and visualization without having to license multiple products.

Going forward, Pentaho is focused on joint opportunities with HDS such as the emerging Internet of Things. Pentaho cites established industrial customers such as Halliburton, Intelligent Mechatonic Systems and Kirchoff Datensysteme Software as reference accounts for IoT. In addition, a conference participant from Caterpillar Marine Asset Intelligence shared how it embeds Pentaho to help analyze and predict equipment failure on maritime equipment. Pentaho’s ability to integrate and analyze multiple data sources is key to delivering business value in each of these environments, but the company also possesses a little-known asset in the Weka machine learning library, which is an integrated part of the product suite. Our research on next-generation predictive analytics finds that Weka is used by 5 percent of organizations, and many of the companies that use it are large or very large, which is Pentaho’s target market. Given the importance of machine learning in the IoT category, it will be interesting to see how Pentaho leverages this asset.

Also at the conference, an HDS spokesperson discussed its target markets for IoT or what the company calls “social innovation.” These markets include telecommunications, healthcare, public infrastructure and IT analytics and reflect HDS’s customer base and the core businesses of its parent company Hitachi. Pentaho Data Integration is currently embedded within major customer environments such as Caterpillar, CERN, FINRA, Halliburton, NASDAQ, Sears and Staples, but not all of these companies fit directly into the IoT segments HDS outlined. While Hitachi’s core businesses provide a fertile ground in which grow its business, Pentaho will need to develop integration with the large industrial control systems already in place in those organizations.

The integration of Pentaho into HDS is a key priority. The 2,000-strong global sales force of HDS is now incented to sell Pentaho, and it will be important for the reps to include it as they discuss their accounts’ needs. While Pentaho’s portfolio can potentially broaden sales opportunities for HDS, big data software is a more consultative sale than the price-driven hardware and systems that the sales force may be used to. Furthermore, the buying centers, which are shifting from IT to lines of business, can be significantly different based on the type of organization and their objectives. To address this will require significant training within the HDS sales force and with partner consulting channels. The joint sales efforts will be well served by emphasizing the “big data blueprints” developed by Pentaho over the last couple of years and developing of new ones that speak to IoT and the combined capabilities of the two companies.

HDS says it will begin to embed Pentaho into its product portfolio but has promised to leave Pentaho’s roadmap intact. This is important because Pentaho has done a good job of listening to its customers and addressing the complexities that exist in big data and open source environments. As the next chapter unfolds, I will be looking at how the company integrates its platform with the HDS portfolio and expands it to deal with the complexities of IoT, which we will be investigating in upcoming benchmark research study.

For organizations that need to use large-scale integrated data sets, Pentaho provides one of the most flexible yet mature tools in the market, and they should consider it. The analytics tool provides an integrated and embeddable front end that should be of particular interest to analytics services providers and independent software vendors seeking to make information management and data analytics core capabilities. For existing HDS customers, the Pentaho portfolio will open conversations in new areas of those organizations and potentially add considerable value within accounts.

Regards,

Ventana Research

RSS Tony Cosentino’s Analyst Perspectives at Ventana Research

  • An error has occurred; the feed is probably down. Try again later.

Tony Cosentino – Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.

Stats

  • 73,049 hits
%d bloggers like this: